Convergence Theorems for Two Iterative Methods

A stationary iterative method for solving the linear system:

$$
\begin{equation*}
A x=b \tag{1.1}
\end{equation*}
$$

employs an iteration matrix B and constant vector c so that for a given starting estimate x^{0} of x, for $k=0,1,2, \ldots$

$$
\begin{equation*}
x^{k+1}=B x^{k}+c \text {. } \tag{1.2}
\end{equation*}
$$

For such an iteration to converge to the solution x it must be consistent with the original linear system and it must converge. To be consistent we simply need for x to be a fixed point - that is:

$$
\begin{equation*}
x=B x+c . \tag{1.3}
\end{equation*}
$$

Since that is equivalent to $(I-B) x=c$, the consistence condition can be stated independent of x by saying

$$
\begin{equation*}
A(I-B)^{-1} c=b . \tag{1.4}
\end{equation*}
$$

The easiest way to develop a consistent stationary iterative method is to split the matrix A :

$$
\begin{equation*}
A=M+N \tag{1.5}
\end{equation*}
$$

then rewrite $A x=b$ as

$$
\begin{equation*}
M x=-N x+b . \tag{1.6}
\end{equation*}
$$

The iteration will then be

$$
\begin{equation*}
M x^{k+1}=-N x^{k}+b . \tag{1.7}
\end{equation*}
$$

Recasting this in the form above we have

$$
B=-M^{-1} N \text { and } c=M^{-1} b .
$$

It is easy to show that this iteration is consistent for any splitting as long as M is nonsingular. Obviously, to be practical the matrix M must be selected so that the system $M y=d$ is easily solved. Popular choices for M are diagonal matrices (as in the Jacobi method), lower triangular matrices (as in the Gauss-Seidel and SOR methods), and tridiagonal matrices.

Convergence:

Thus, constructing consistent iterations is easy - the difficult issue is constructing convergent consistent iterations. However, notice that if is equation (1.3) subtracted from equation (1.2) we obtain

$$
\begin{equation*}
e^{k+1}=B e^{k}, \tag{1.8}
\end{equation*}
$$

where e^{k} is the error $x^{k}-x$.

Our first result on convergence follows immediately from this.
Theorem 1:

The stationary iterative method for solving the linear system:

$$
x^{k+1}=B x^{k}+c \text { for } k=0,1,2, \ldots
$$

converges for any initial vecrtor x^{0} if $\|B\|<1$ for some matrix norm that is consistent with a vector norm

Proof:

Let $\|$.$\| be a matrix norm consistent with a vector norm \|$.$\| and such that \|B\|<1$.
We then have

$$
\begin{equation*}
\left\|e^{k+1}\right\|=\left\|B e^{k}\right\| \leq\|B\|\left\|e^{k}\right\| \tag{1.9}
\end{equation*}
$$

and a simple inductive argument shows that in general

$$
\begin{equation*}
\left\|e^{k}\right\| \leq\|B\|^{k}\left\|e^{0}\right\| \tag{1.10}
\end{equation*}
$$

Since $\|B\|<1,\left\|e^{k}\right\|$ must converge to zero (and thus x^{k} converge to x) independent of e^{0}.

This theorem provides a sufficient condition for convergence. Without proof we offer this theorem that provides both necessary and sufficient conditions for convergence. It employs the spectral radius of a matrix:
$\rho(A)=$ the absolute value of the largest eigenvalue of A in absolute value.

Theorem 2:

The stationary iterative method for solving the linear system:

$$
x^{k+1}=B x^{k}+c \text { for } k=0,1,2, \ldots
$$

converges for any initial vector x^{0} if and only if $\rho(B)<1$.
The easiest way to prove this uses the Jordan Normal Form of the matrix B. Notice that the theorem does not say that if $\rho(B) \geq 1$ the iteration will not converge. It says that if $\rho(B) \geq 1$ the iteration will not converge for some initial vector x^{0}. In practical terms though the difference is minor: the only way to have convergence with $\rho(B) \geq 1$ is to have an initial error e^{0} having no component in any direction of an eigenvector of B corresponding to an eigenvalue at least one in absolute value. This is a probability zero event.

The following theorem uses Theorem 1 to show the Jacobi iteration converges if the matrix is strictly row diagonally dominant. Recall that Jacobi iteration is

$$
\begin{equation*}
x_{i}^{k+1}=\left(b_{i}-\sum_{j \neq i} a_{i, j} x_{i}^{k}\right) / a_{i, i} \quad \text { for } i=1,2, \ldots, n \tag{1.11}
\end{equation*}
$$

and that strict row diagonal dominance says that

$$
\begin{equation*}
\sum_{j \neq i}\left|a_{i, j}\right|<\left|a_{i, i}\right| \quad \text { for } i=1,2, \ldots, n . \tag{1.12}
\end{equation*}
$$

The splitting for the Jacobi method is $A=D+(L+U)$, where D, L, and U are the diagonal, strict lower triangle, and strict upper triangle of the matrix, respectively. Thus the iteration matrix is $-D^{-1}(L+U)$.

Theorem 3:

The Jacobi iterative method

$$
x_{i}^{k+1}=\left(b_{i}-\sum_{j \neq i} a_{i, j} x_{i}^{k}\right) / a_{i, i} \quad \text { for } i=1,2, \ldots, n
$$

for solving the linear system $A x=b$ converges for any initial vector x^{0} if the matrix A is strictly row diagonally dominant.

Proof:

Let $\|\cdot\|_{\infty}$ indicate the infinity vector norm as well as its subordinate matrix norm. To prove the theorem it suffices to show $\left\|-D^{-1}(L+U)\right\|_{\infty}<1$. To that end consider the row sums in absolute values of the matrix $-D^{-1}(L+U)$. These are $\sum_{j \neq i} \frac{\left|a_{i, j}\right|}{\left|a_{i, i}\right|}$, but property (1.12) guarantees that this is strictly less than one. The maximum of the row sums in absolute value is also strictly less than one, so $\left\|-D^{-1}(L+U)\right\|_{\infty}<1$ as well.

The next theorem uses Theorem 2 to show the Gauss-Seidel iteration also converges if the matrix is strictly row diagonally dominant. Recall that Gauss-Seidel iteration is

$$
\begin{equation*}
x_{i}^{k+1}=\left(b_{i}-\sum_{j<i} a_{i, j} x_{i}^{k+1}-\sum_{j>i} a_{i, j} x_{i}^{k}\right) / a_{i, i} \quad \text { for } i=1,2, \ldots, n \tag{1.13}
\end{equation*}
$$

The splitting for the Gauss-Seidel method is $A=(L+D)+U,$. Thus the iteration matrix is $-(L+D)^{-1} U$.

Theorem 4:

The Gauss-Seidel iterative method

$$
x_{i}^{k+1}=\left(b_{i}-\sum_{j<i} a_{i, j} x_{i}^{k+1}-\sum_{j>i} a_{i, j} x_{i}^{k}\right) / a_{i, i} \quad \text { for } i=1,2, \ldots, n
$$

for solving the linear system $A x=b$ converges for any initial vector x^{0} if the matrix A is strictly row diagonally dominant.

Proof:

According to Theorem 2, it suffices to show $\rho\left(-(L+D)^{-1} U\right)<1$. To that end let v be any eigenvector corresponding to an eigenvalue λ of $-(L+D)^{-1} U$ such $|\lambda|=\rho\left(-(L+D)^{-1} U\right)$. We shall show $|\lambda|<1$ and thus $\rho\left(-(L+D)^{-1} U\right)<1$. We have

$$
\begin{equation*}
U v=-\lambda(L+D) v \tag{1.14}
\end{equation*}
$$

so

$$
\begin{equation*}
-(L+D)^{-1} U v=\lambda v . \tag{1.15}
\end{equation*}
$$

In a component fashion, this says

$$
\begin{equation*}
\sum_{j>i} a_{i, j} v_{j}=-\lambda \sum_{j \leq i} a_{i, j} v_{j} . \tag{1.16}
\end{equation*}
$$

Let m denote an index of v corresponding to the largest component in absolute value. That is

$$
\begin{equation*}
\left|v_{m}\right|=\max _{j}\left\{\left|v_{j}\right|\right\} \tag{1.17}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\left|v_{j}\right|}{\left|v_{m}\right|} \leq 1 . \tag{1.18}
\end{equation*}
$$

We also have for row m in particular

$$
\begin{aligned}
\sum_{j>m}\left|a_{m, j}\right|\left|v_{j}\right| & \geq\left|\sum_{j>m} a_{m, j} v_{j}\right| \\
& =|\lambda|\left|\sum_{j \leq m} a_{m, j} v_{j}\right| \\
& =|\lambda|\left|a_{m, m} v_{m}+\sum_{j<m} a_{m, j} v_{j}\right| \\
& \geq|\lambda|\left(\left|a_{m, m} v_{m}\right|-\left|\sum_{j<m} a_{m, j} v_{j}\right|\right) \\
& \geq|\lambda|\left(\left|a_{m, m}\right|\left|v_{m}\right|-\sum_{j<m}\left|a_{m, j}\right|\left|v_{j}\right|\right)
\end{aligned}
$$

Dividing by the necessarily positive values $\left|a_{m, m}\right|$ and $\left|v_{m}\right|$, we have

$$
\begin{equation*}
\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|} \geq \sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}\left|\frac{\left|v_{j}\right|}{\left|v_{m}\right|} \geq|\lambda|\left(\left.1-\sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|} \right\rvert\, \frac{\left|v_{j}\right|}{\left|\left|v_{m}\right|\right.}\right) \geq|\lambda|\left(1-\sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}\right)\right. \tag{1.19}
\end{equation*}
$$

so

$$
\begin{equation*}
|\lambda| \leq \frac{\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}}{1-\sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}} . \tag{1.20}
\end{equation*}
$$

But since $\sum_{j \neq m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}<1$, it follows that

$$
1>\sum_{j \neq m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}=\sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}+\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}
$$

and

$$
|\lambda| \leq \frac{\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}}{1-\sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}}<1
$$

It is easy to show that $\frac{\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}}{1-\sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}}<\max _{i}\left\{\sum_{j \neq i} \frac{\left|a_{i, j}\right|}{\left|a_{i, i}\right|}\right\}$ so the bound on the spectral radius iteration matrix of the Gauss-Seidel method is strictly less than the bound of the infinity norm of the iteration matrix of the Jacobi method. That does not guarantee that the Gauss-Seidel iteration always converges faster than the Jacobi iteration. However, it is often observed in practice that Gauss-Seidel iteration converges about twice as fast as the Jacobi iteration. To see this, imagine that $\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|} \approx \sum_{j<m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}$. Call this quantity $\frac{1}{2}-\theta$. We have $\theta>0$ and, if θ is small, then $\frac{\sum_{j>m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}}{1-\sum_{j<m}^{\left\lvert\, \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|}\right.}} \approx 1-4 \theta$. Yet $\sum_{j \neq m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|} \approx\left(\frac{1}{2}-\theta\right)+\left(\frac{1}{2}-\theta\right)=1-2 \theta$, and if we imagine for $\sum_{j \neq m} \frac{\left|a_{m, j}\right|}{\left|a_{m, m}\right|} \approx \max _{i}\left\{\sum_{j \neq i}^{\left.\left\lvert\, \frac{\left|a_{i, j}\right|}{\left|a_{i, i}\right|}\right.\right\}, ~}\right.$ then our bound for the norm of the Jacobi iteration matrix is $1-2 \theta$ while our bound on the spectral radius iteration matrix of the Gauss-Seidel method is $1-4 \theta$.

Notice that if the iteration converges as $\frac{\left\|e^{k}\right\|}{\left\|e^{0}\right\|} \approx \sigma^{k}$, for some factor σ, then to reduce $\frac{\left\|e^{k}\right\|}{\left\|e^{0}\right\|}$ to some tolerance ε requires a value of k of about $\frac{\ln \varepsilon}{\ln \sigma}$. If $\sigma \approx 1$, then $\ln \sigma \approx-(1-\sigma)$ so we estimate about $\frac{-\ln \varepsilon}{(1-\sigma)}$ steps. With Jacobi we have $\frac{-\ln \varepsilon}{1-\sigma} \approx \frac{-\ln \varepsilon}{2 \theta}$ but with Gauss-Seidel we have $\frac{-\ln \varepsilon}{1-\sigma} \approx \frac{-\ln \varepsilon}{4 \theta}$ which justifies the claim that Jacobi converges twice as fast.

Lastly, without proof we state another theorem for convergence of the Gauss-Seidel iteration.

Theorem 5:
The Gauss-Seidel iterative method

$$
x_{i}^{k+1}=\left(b_{i}-\sum_{j<i} a_{i, j} x_{i}^{k+1}-\sum_{j>i} a_{i, j} x_{i}^{k}\right) / a_{i, i} \quad \text { for } i=1,2, \ldots, n
$$

for solving the linear system $A x=b$ converges for any initial vector x^{0} if the matrix A is symmetric and positive definite.

