Matrix Norms

Lemma: Given any vector norm $\|\cdot\|$ and any non-zero vector $x, \frac{1}{\|x\|} x$ is a unit vector. That is

$$
\left\|\frac{1}{\|x\|} x\right\|=1 .
$$

Theorem 1.: Given vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\gamma}$ defined for $m-$ and n-dimensional real vector spaces, respectively, define the real values function on the space of $m \times n$ real matrices,

$$
N(A)=\max _{\|x\|_{y}=1}\left\{\|A x\|_{\alpha}\right\}
$$

for all $m \times n$ real matrices A. This function is a norm.

Proof:

Since $\|\cdot\|_{\gamma}$ is a vector norm, we have that for any $x,\|A x\|_{\alpha} \geq 0$. Thus

$$
N(A)=\max _{\|x\|_{y}=1}\left\{\|A x\|_{\alpha}\right\} \geq 0 .
$$

If A is the zero matrix, then for any $x,\|A x\|_{\alpha}=0$, so $\max _{\|x\|_{y}=1}\left\{\|A x\|_{\alpha}\right\}=0$. If A is not the zero matrix, then it must have a non-zero element - call it $a_{i, j}$. Letting e_{j} be the $j^{\text {th }}$ coordinate vector, then with $\bar{e}_{j}=\frac{1}{\left\|e_{j}\right\|_{\gamma}} e_{j}$, we have $A \bar{e}_{j} \neq 0$ so
$\left\|A \bar{e}_{j}\right\|_{\alpha}>0$, and $\left\|\bar{e}_{j}\right\|_{\gamma}=1$ so $N(A)=\max _{\|x\|_{y}=1}\left\{\|A x\|_{\alpha}\right\} \geq\left\|A \bar{e}_{j}\right\|_{\alpha}>0$. For any real value a,

$$
\begin{aligned}
N(a A) & =\max _{\|x\|_{y}=1}\left\{\|a A x\|_{\alpha}\right\} \\
& =\max _{\|x\|_{y}=1}\left\{|a|\|A x\|_{\alpha}\right\} \\
& =|a| \max _{\|x\|_{y}=1}\left\{\|A x\|_{\alpha}\right\} \\
& =|a| N(A) .
\end{aligned}
$$

Lastly,

$$
\begin{aligned}
N(A+B) & =\max _{\|x\|_{y}=1}\left\{\|(A+B) x\|_{\alpha}\right\} \\
& =\max _{\|x\|_{\gamma}=1}\left\{\|A x+B x\|_{\alpha}\right\} \\
& \leq \max _{\|x\|_{\gamma}=1}\left\{\|A x\|_{\alpha}+\|B x\|_{\alpha}\right\} \\
& \leq \max _{\|x\|_{\gamma}=1}\left\{\|A x\|_{\alpha}\right\}+\max _{\|x\|_{y}=1}\left\{\|A x\|_{\alpha}\right\} \\
& \leq N(A)+N(B) .
\end{aligned}
$$

Thus, N is a norm. -

Theorem 2 gives an equivalent definition of the function N.
Theorem 2.: The function N defined in Theorem 1 satisfies,

$$
N(A)=\sup _{x \neq 0}\left\{\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}}\right\} .
$$

for all $m \times n$ real matrices A.
Proof: For any $\gamma-$ norm unit vector x,

$$
\begin{aligned}
\|A x\|_{\alpha} & =\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}} \\
& \leq \sup _{x \neq 0}\left\{\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}}\right\}
\end{aligned} .
$$

Since this holds for any γ - norm unit vector x,

$$
N(A)=\max _{\|x\|, y}\left\{\|A x\|_{\alpha}\right\} \leq \sup _{x \neq 0}\left\{\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}}\right\}
$$

Also for any $\gamma-$ norm unit vector x,

$$
\|A x\|_{\alpha} \leq \max _{\|x\|_{\gamma}=1}\left\{\|A x\|_{\alpha}\right\}=N(A) .
$$

We have

$$
N(A) \leq \sup _{x \neq 0}\left\{\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}}\right\} \leq N(A),
$$

so the theorem is established. -

Given vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\gamma}$ defined for m - and n-dimensional real vector spaces, and matrix norm $\|\cdot\|_{\beta}$ defined for $m \times n$ real matrices, we say the matrix norm is consistent with the vector norms if for all $m \times n$ real matrices A and all real n-vectors x, the real m - vector $A x$ satisfies

$$
\|A x\|_{\alpha} \leq\|A \cdot\|_{\beta}\|x\|_{\gamma} .
$$

Theorem 3 establishes that the norm defined in Theorem 1 is the minimal consistent matrix norm. As such, we term it the matrix norm subordinate to the vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\gamma}$.

Theorem 3.: Given vector norms $\|\cdot\|_{\alpha}$ and $\left\|\left\|\|_{\gamma}\right.\right.$ defined for m - and n-dimensional real vector spaces, and matrix norm $\|\cdot\|_{\beta}$ defined for $m \times n$ real matrices consistent with the vector norms,

$$
N(A) \leq\|A\|_{\beta}
$$

for all $m \times n$ real matrices A.

Proof:

For any non-zero, real n-vectors $x,\|A x\|_{\alpha} \leq\|A \cdot\|_{\beta}\|x\|_{\gamma}$, so

$$
\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}} \leq\|A \cdot\|_{\beta}
$$

The right hand side is independent of x, so

$$
\sup _{x \neq 0}\left\{\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}}\right\} \leq\|A \cdot\|_{\beta},
$$

but according to Theorem 2, $N(A)=\sup _{x \neq 0}\left\{\frac{\|A x\|_{\alpha}}{\|x\|_{\gamma}}\right\}$.•
As an example, we show that with both vector norms taken as the ∞ norm (on m - and n-dimensional real vector spaces, respectively) the subordinate vector norm is equal to the maximal rows sum of absolute values.

Theorem 4: Let A be an $m \times n$ real matrix. Then

$$
\max _{i=1, \ldots, m}\left\{\sum_{j=1}^{n}\left|a_{i, j}\right|\right\}=\max _{\|x\|_{\infty}=1}\left\{\|A x\|_{\infty}\right\} .
$$

Thus, the matrix norm subordinate to the $\|\cdot\|_{\infty}$ vector norm is

$$
\|A\|_{\infty}=\max _{i=1, \ldots, m}\left\{\sum_{j=1}^{n}\left|a_{i, j}\right|\right\}
$$

Proof:

Consider any ∞ norm unit vector x. Since each of its components satisfies $\left|x_{j}\right| \leq 1$, we have for $i=1, \ldots, m$

$$
\begin{aligned}
\left|\sum_{j=1}^{n} a_{i, j} x_{j}\right| & \leq \sum_{j=1}^{n}\left|a_{i, j} x_{j}\right| \\
& \leq \sum_{j=1}^{n}\left|a_{i, j} \| x_{j}\right| \\
& \leq \sum_{j=1}^{n}\left|a_{i, j}\right| .
\end{aligned}
$$

Thus by taking the maximum over i,

$$
\left|\sum_{j=1}^{n} a_{i, j} x_{j}\right| \leq \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right|,
$$

holds for any ∞ norm unit vector x, thus

$$
\|A x\|_{\infty}=\max _{i=1, \ldots, m}\left|\sum_{j=1}^{n} a_{i, j} x_{j}\right| \leq \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right|,
$$

and by taking the maximum over all such vectors, we have

$$
\max _{\|x\|_{\infty}=1}\left\{\|A x\|_{\infty}\right\} \leq \max _{i=1, \ldots, m}\left\{\sum_{j=1}^{n}\left|a_{i, j}\right|\right\} .
$$

For a fixed matrix A, let k be the index of a row with maximal row sum - that is,

$$
\sum_{j=1}^{n}\left|a_{k, j}\right|=\max _{i=1, \ldots, m}\left\{\sum_{j=1}^{n}\left|a_{i, j}\right|\right\} .
$$

Now define a vector x as

$$
x_{j}=\left\{\begin{array}{cl}
1 & \text { if } a_{k, j} \geq 0 \\
-1 & \text { if } a_{k, j}<0
\end{array} .\right.
$$

Notice that for $j=1, \ldots, n, a_{k, j} x_{j}=\left|a_{k, j} x_{j}\right|=\left|a_{k, j}\right|$, so

$$
\begin{aligned}
\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right| & =\sum_{j=1}^{n}\left|a_{k, j}\right| \\
& =\sum_{j=1}^{n} a_{k, j} x_{j} \\
& =\left|\sum_{j=1}^{n} a_{k, j} x_{j}\right| \\
& \leq \max _{i=1, \ldots, m}\left|\sum_{j=1}^{n} a_{i, j} x_{j}\right| \\
& =\|A x\|_{\infty}
\end{aligned}
$$

This hold for a particular ∞ norm unit vector x, so by taking a maximum

$$
\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right| \leq \max _{\|x\|_{\infty}=1}\|A x\|_{\infty} .
$$

We have now

$$
\max _{\|x\|_{\infty}=1}\|A x\|_{\infty} \leq \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right| \leq \max _{\|x\|_{\infty}=1}\|A x\|_{\infty},
$$

so

$$
\|A x\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right| \cdot \cdot
$$

