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Thus,  is a norm. ▪  N



Theorem 2 gives an equivalent definition of the function . N
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Given vector norms 

α
⋅ and 

γ
⋅  defined for m −  and n − dimensional real vector spaces, 

and matrix norm 
β
⋅ defined for m n×  real matrices, we say the matrix norm is consistent 

with the vector norms if for all m  real matrices  and all real n× A n − vectors x , the real 
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Theorem 3 establishes that the norm defined in Theorem 1 is the minimal consistent ma-
trix norm. As such, we term it the matrix norm subordinate to the vector norms
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Theorem 3.: Given vector norms 
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As an example, we show that with both vector norms taken as the ∞  norm (on  and 

dimensional real vector spaces, respectively) the subordinate vector norm is equal to 
the maximal rows sum of absolute values. 
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Thus by taking the maximum over  ,i
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and by taking the maximum over all such vectors, we have 
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This hold for a particular ∞  norm unit vector x , so by taking a maximum 
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