M 340L - CS
 Homew ork Set 3 Solutions

1. a. Perform the computation of $(1.3579-(975310.23 / 34567.89)) \times .00023456$ entirely in 3 decimal digit rounding floating point.

$$
\begin{aligned}
& 1.3579 \rightarrow 1.36 \\
& 975310.23 \rightarrow 975000 \\
& 34567.89 \rightarrow 34600 \\
& .00023456 \rightarrow .000235 \\
& 975000 / 34600=28.179190751445088 \ldots \rightarrow 28.2 \\
& 1.36-28.2=-26.84 \rightarrow-26.8 \\
& -26.8 \times .000235=-0.006298 \rightarrow-.00630
\end{aligned}
$$

b. What is the result of the same computation in exact arithmetic?

$$
(1.3579-(975310.23 / 34567.89)) \times .00023456=-0.006299446759497 \ldots
$$

c. What is the error?

$$
-.00630-(-0.006299446759497 \ldots)=-.0000055324 \ldots
$$

d. What is the (absolute) relative error?

$$
\left|\frac{.00000055324 \ldots}{-0.006299446759497 \ldots}\right|=.00008782366512143027 \ldots
$$

2. Backward Error: The 3 decimal digit rounding floating point result of computing $(36.258-31.9876)+537.862$ is 542 . Find operands a, b, and c close to $36.258,31.9876$, and 537.862 (relative to the largest of them), respectively, so that the exact computation of $(a-b)+c$ is 542 . (Notice we do not compare the computed result 542 to the exact result 542.1324....)

Let $a=36.2138, \mathrm{~b}=32.0317$, and $c=537.8179$, then $(a-b)+c$ is 542 and the changes to 36.258, 31.9876, and 537.862 are about . 044 .
3. Determine if the system has a nontrivial solution. (One row operation is sufficient to determine the answer.)

$$
\begin{array}{r}
5 x_{1}-3 x_{2}+2 x_{3}=0 \\
-3 x_{1}-4 x_{2}+2 x_{3}=0
\end{array}
$$

$$
\left[\begin{array}{cccc}
5 & -3 & 2 & 0 \\
-3 & -4 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
5 & -3 & 2 & 0 \\
0 & -29 / 5 & 16 / 5 & 0
\end{array}\right] . x_{3} \text { is free so there is a nontrivial solution. }
$$

4. Write the solution set of the given homogeneous system in parametric vector form. (Follow the method of Examples 1 and 2 in Lay 1.5)

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=0 \\
& 2 x_{1}+x_{2}-3 x_{3}=0 \\
& -x_{1}+x_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
2 & 1 & -3 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -3 & 3 & 0 \\
0 & 3 & -3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

x_{3} is free, $x_{2}=x_{3}, x_{1}=x_{3}$. In parametric vector form this is $x=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

In problems 5 and 6, describe all solutions of $A x=0$ in parametric vector form, where A is row equivalent to the given matrix.
5.

$$
\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -7 \\
0 & 1 & 2 & -4
\end{array}\right] . x_{4} \text { is free and } x_{3} \text { is free, } x_{2}=-2 x_{3}+4 x_{4}
$$

$$
x_{1}=2 x_{3}+7 x_{4} . \text { In parametric vector form this is } x=x_{3}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
4 \\
0 \\
1
\end{array}\right] \text {. }
$$

6.

$$
\left[\begin{array}{cccccc}
1 & -2 & 3 & -6 & 5 & 0 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
1 & -2 & 3 & -6 & 5 & 0 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & -2 & 3 & 0 & 29 & -36 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & -2 & 3 & 0 & 29 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
x_{6}=0, x_{5} \text { is free, } x_{4}=-4 x_{5}, x_{3} \text { is free, } x_{2} \text { is free, and } x_{1}=2 x_{2}-3 x_{3}-29 x_{5} . \text { In parametric }
$$

$$
\text { vector form this is } x=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-29 \\
0 \\
0 \\
-4 \\
1 \\
0
\end{array}\right] .
$$

7. Mark each statement True or False then justify your answ er.
a. A homogeneous system of equations can be inconsistent.

False. Since the zero vector is always a solution, a homogeneous system of equations can never be inconsistent.
b. If x is a nontrivial solution of $A x=0$, then every entry in x is nonzero.

False. A nontrivial solution need only have at least one non-zero component.
c. The effect of adding vector p to a vector x is to move the vector x in a direction parallel to p.

True. The vertices $0, p, x+p, x$ form a parallelogram so the effect of adding p to x to get $x+p$ is a line parallel to the line from zero to p.
d. The equation $A x=b$ is homogeneous if the zero vector is a solution.

True. Since $A 0=b=0$, the equation $A x=b$ is also $A x=0$ and thus is homogeneous.
8. Construct a 3×3 nonzero matrix A such that the vector $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ is a solution of $A x=0$.

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

9. Given $A=\left[\begin{array}{cc}3 & -2 \\ -6 & 4 \\ 12 & -8\end{array}\right]$, find one nontrivial solution of $A x=0$ by inspection.

Since twice the first column plus three times the third column is zero, $x=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
10. a. Use the original version of the Gaussian Elimination Algorithm to solve $\left[\begin{array}{cc}.001 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Do this with exact arithmetic.

To solve $\left[\begin{array}{cc}.001 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ exactly we have for matrix A in storage
$\left[\begin{array}{cc|c}.001 & -1 & 1 \\ 1 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}.001 & -1 & 1 \\ 1 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}.001 & -1 & 1 \\ 1 & 1002 & -1000\end{array}\right]$
The solution is $x_{2}=\frac{-1000}{1002}=-.99803992 \ldots$,

$$
x_{1}=\frac{1-(-1)\left(\frac{-1000}{1002}\right)}{.001}=\frac{2000}{1002}=1.996007984 \ldots .
$$

b. Now employ the same algorithm on the same problem but simulate a three decimal digit floating point environment (thus $2+1000$ is computed as 1000).

To solve $\left[\begin{array}{cc}.001 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ we would have for matrix A in storage
$\left[\begin{array}{cc|c}.001 & -1 & 1 \\ 1 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & 1 \\ 1 & 1000 & -1000\end{array}\right]$ (since $2+1000$ is computed as 1000). The computed solution is $x_{2}=\frac{-1000}{1000}=-1$, and $x_{1}=\frac{1-(-1)(-1)}{1}=0$.
c. Finally, use the same algorithm and do the work again in a three decimal digit floating point environment (thus $-1-.002$ is computed as -1) but swap the two rows so you are solving $\left[\begin{array}{cc}1 & 2 \\ .001 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

To solve $\left[\begin{array}{cc}1 & 2 \\ .001 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ with the original algorithm we w ould have for matrix A in storage $\left[\begin{array}{cc|c}1 & 2 & 0 \\ .001 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 2 & 0 \\ .001 & -1 & 1\end{array}\right]$ (since $-1-.002$ is computed as -1).The computed solution is $x_{2}=\frac{1}{-1}=-1$, and $x_{1}=\frac{0-2(-1)}{1}=2$.

