M 340L - CS
Homework Set 4

1. Mark T (rue) or F (alse) for each of the following statements:
___ The column space of A is the set of all vectors that can be written as $A x$ for some x.
___b. Elementary row operations on an augmented matrix can change the solution set of the associated linear system.
\qquad c. If b is in the set spanned by the columns of A then the equation $A x=b$ is consistent.
___d. For an $n \times n$ system of linear equations, the Gaussian Elimination Algorithm with Partial Pivoting and Elimination Separated from Solving uses approximately $n^{3} / 3$ floating point multiplications and $2 n^{3} / 3$ floating point additions/subtractions.
\qquad e. the Gaussian Elimination Algorithm with Partial Pivoting has multipliers no larger than one in absolute value.
\qquad f. A homogeneous equation is always consistent.
g. The homogeneous equation $A x=0$ has the trivial solution if and only if the equation has at least one free variable.
___h. If x is a nontrivial solution of $A x=0$, then every entry in x is nonzero.
\qquad i. The effect of adding p to a vector is to move the vector in a direction parallel to p.
\qquad j. The equation $A x=b$ is homogeneous if the zero vector is a solution.
2. a Find the general solutions of the systems $A x=0$ whose matrix is:

$$
\left[\begin{array}{cccccc}
1 & -2 & 3 & -6 & 5 & 0 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

b. Express this solution in parametric vector form.
3. Show that if $A x=b$ and $A y=0$, then for any scalar $\alpha, A(x+\alpha y)=b$. (Remember a proof begins with the hy pothesis and ends with the conclusion.)
4. Suppose you are to solve m different linear systems of n equations in n unknowns. All of the equations have the same matrix; how ever, they just differ in right hand sides. Estimate how many multiplications are required.
5. Use the Gaussian Elimination with Partial Pivoting and Solution algorithm to solve

$$
\begin{aligned}
3 x_{1}+5 x_{2}-2 x_{3} & =-16 \\
-3 x_{1}-x_{3} & =-5 \\
6 x_{1}+2 x_{2}+4 x_{3} & =8
\end{aligned}
$$

Show what occupies storage in the A matrix and the ip array initially and after each major step of elimination.

A
ip

6. Fill in the five blanks in the code for Gaussian Elimination with Partial Pivoting and Solution

```
for k = 1:n
    choose ip}\mp@subsup{p}{k}{}\mathrm{ such that }|\mp@subsup{A}{i\mp@subsup{p}{k}{},k}{}|=\operatorname{max}{|\mp@subsup{A}{i,k}{}|:i\geqk
    if }\mp@subsup{A}{i\mp@subsup{p}{k}{},k}{}=
                warning ('Pivot in Gaussian Elimination is zero')
        end
    swap A}\mp@subsup{A}{k,k}{},\ldots,\mp@subsup{A}{k,n}{}\mathrm{ with }\mp@subsup{A}{i\mp@subsup{p}{k}{},k}{},\ldots,\mp@subsup{A}{i\mp@subsup{p}{k}{},n}{
        for i=
```

\qquad

```
\[
A_{i, k}=
\]
\[
\text { for } j=k+1: n
\]
\[
A_{i, j}=
\]
```

\qquad

```
            end
    end
end
for k=1:n
    swap }\mp@subsup{b}{k}{}\mathrm{ with
```

\qquad

```
    fori=k+1:n
        b}=\mp@subsup{b}{i}{}-\mp@subsup{A}{i,k}{}\mp@subsup{b}{k}{
    end
end
x = b
for i=n:-1:1
    for j= i+1:n
        x = xi
    end
    xi=
```

\qquad

```
end
```

