1. Suppose P is invertible and $A=P B P^{-1}$. Solve for B in terms of P and A.

Since $A=P B P^{-1}$, we have $B=P^{-1}\left(P B P^{-1}\right) P=P^{-1} A P$.
2. Suppose $(B-C) D=0$, where B and C are $m \times n$ matrices and D is invertible. Prove that $B=C$.

$$
\begin{aligned}
& \text { We have }(B-C) D=0 \text {, so } B-C=(B-C) D D^{-1}=0 D^{-1}=0 \text { and } \\
& B=C+(B-C)=C+0=C \text {. }
\end{aligned}
$$

3. Suppose A and B are square matrices, B is invertible, and $A B$ is invertible. Prove that A is invertible. [Hint: Let $C=A B$, and solve this equation for A in terms of B and C.]

$$
\text { If } C=A B \text {, we have } A=A B B^{-1}=C B^{-1} \text {, so } A^{-1}=\left(C B^{-1}\right)^{-1}=\left(B^{-1}\right)^{-1} C^{-1}=B(A B)^{-1} \text {. }
$$

4. Solve the equation $A B=B C$ for A, assuming that A, B, and C are square and B is invertible.

$$
\text { We have } A=A B B^{-1}=B C B^{-1} .
$$

5. A nsw er true or false to the following. If false offer a counterexample.
a. If u and v are linearly independent, and if w is in $\operatorname{Span}\{u, v\}$, then u, v, w are linearly dependent.

True. If w is in $\operatorname{Span}\{u, v\}$ it must be a linear combination of u and v.
b. If three vectors in \mathbb{R}^{3} lie in the same plane in \mathbb{R}^{3}, then they are linearly dependent.

False. The three vectors $u=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], w=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are in \mathbb{R}^{3} lie and lie in the plane $x_{3}=1$, but are linearly independent.
c. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.

False. The set of the single vector $u=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has two entries but is not linearly independent.
d. If a set in \mathbb{R}^{n} is linearly dependent then the set contains more than n vectors.

False. The set of the single vector $u=\left[\begin{array}{l}0 \\ 0\end{array}\right] \in \mathbb{R}^{2}$ is linearly dependent but does not contains more than 2 vectors.
e. If v_{1} and v_{2} are in \mathbb{R}^{4} and v_{2} is not a scalar multiple of v_{1}, then v_{1}, v_{2} are linearly independent.

False. With the vectors $v_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right] \in \mathbb{R}^{4}, v_{2}$ is not a scalar multiple of v_{1}, but
v_{1}, v_{2} are linearly dependent since $v_{1}=0 v_{2}$.
f. If v_{1}, v_{2}, v_{3} are in \mathbb{R}^{3} and v_{3} is not a linear combination of v_{1}, v_{2}, then v_{1}, v_{2}, v_{3} are linearly independent.

False. With the vectors $v_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \in \mathbb{R}^{3}, v_{3}$ is not a linear combination of v_{1}, v_{2}, , but v_{1}, v_{2}, v_{3} are linearly dependent since $v_{1}=0 v_{2}+0 v_{3}$.
g. If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{4}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is also linearly independent.

True. If no linear combination of the elements of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is zero then no linear combination of the elements of $\left\{v_{1}, v_{2}, v_{3}\right\}$ is zero.
6. A nsw er true or false to the following. If false offer a counterexample.
a. The range of the transformation $x \mapsto A x$ is the set of all linear combinations of the columns of A.

True. The range of the transformation $x \mapsto A x$ is the set of all vectors of the form $A x$ and that equals the set of al linear combinations of the columns of A.
b. Every matrix transformation is a linear transformation.

True. We have $A(\alpha x)=\alpha A x$ and $A(x+y)=A x+A y$ so the transformation $x \mapsto A x$ is linear.
c. A linear transformation preserves the operations of vector addition and scalar multiplication.

True. We have $T(\alpha x)=A(\alpha x)=\alpha A x=\alpha T(x)$ and $T(x+y)=A(x+y)=A x+A y=T(x)+T(y)$ so the operations of vector addition and scalar multiplication are preserved.
d. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ always maps the origin of \mathbb{R}^{n} to the origin of \mathbb{R}^{m}.

True. Since $T(0)=T(0 x)=0 T(x)=0$ for any vector x, a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ alw ays maps the origin of \mathbb{R}^{n} to the origin of \mathbb{R}^{m}.
7. A nswer true or false to the following. If false offer a counterexample.
a. If A is a 4×3 matrix, then the transformation $x \mapsto A x$ maps \mathbb{R}^{3} onto \mathbb{R}^{4}.

False. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $b=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$, then for $x \in \mathbb{R}^{3}, A x$ has zeros in components 2,3, and 4 and thus for no x is $A x=b$.
b. Every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.

True. Let A be an $m \times n$ matrix with columns $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ (where e_{1}, \ldots, e_{n} are the columns of I_{n}), then the matrix transformation $x \mapsto A x$ is equivalent to $x \mapsto T(x)$.
c. The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images under T of the columns of the $n \times n$ identity matrix.

True. Let A be an $m \times n$ matrix with columns $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ (where e_{1}, \ldots, e_{n} are the columns of I_{n}), then the matrix transformation $x \mapsto A x$ is equivalent to $x \mapsto T(x)$.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m} (meaning two vectors in \mathbb{R}^{n} do not map to the same vector in \mathbb{R}^{m}).

True. A function from \mathbb{R}^{n} to \mathbb{R}^{m} is one-to-one if and only if two vectors in \mathbb{R}^{n} do not map to the same vector in \mathbb{R}^{m}.
8. Find formulas for X, Y, and Z in terms of I, A, B, and C and inverses. A ssume A, B, and C have inverses. (Hint: Compute the product on the left, and set it equal to the right side. First, pretend the blocks are simply real numbers but make sure you do not ever divide - you may multiply by inverses, how ever. Be careful about right and left multiplication.) In all cases, assume the block matrix dimensions are such that the products are defined.
a. $\left[\begin{array}{ll}X & 0 \\ Y & Z\end{array}\right]\left[\begin{array}{ll}A & 0 \\ B & C\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$

$$
\begin{aligned}
& \text { We have } X A+0 B=I, Y A+Z B=0, X 0+0 C=0 \text {, and } Y 0+Z C=I \text {, so } \\
& X A=I, Y A=-Z B \text {, and } Z C=I \text {. We conclude that } \\
& X=A^{-1}, \mathrm{Z}=\mathrm{C}^{-1} \text {, and } Y=-Z B A^{-1}=-C^{-1} B A^{-1} \text {. }
\end{aligned}
$$

b. $\left[\begin{array}{cc}A & B \\ 0 & I\end{array}\right]\left[\begin{array}{ccc}X & Y & Z \\ 0 & 0 & I\end{array}\right]=\left[\begin{array}{lll}I & 0 & 0 \\ 0 & 0 & I\end{array}\right]$

We have
$A X+B 0=I, 0 X+I 0=0, A Y+B 0=0,0 Y+I 0=0, A Z+B I=0$, and $0 Z+I I=I$, so $A X=I, A Y=0$, and $A Z=-B$. We conclude that $X=A^{-1}, \mathrm{Y}=0$, and $Z=-A^{-1} B$.
c. $\left[\begin{array}{lll}I & 0 & 0 \\ A & I & 0 \\ B & C & I\end{array}\right]\left[\begin{array}{lll}I & 0 & 0 \\ X & I & 0 \\ Y & Z & I\end{array}\right]=\left[\begin{array}{lll}I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I\end{array}\right]$

Omitting the obvious relations, We have
$A I+I X=0, B I+C X+I Y=0$, and $B 0+C I+I Z=0$, so
$A+X=0, B+C X+Y=0$, and $C+Z=0$. We conclude that $X=-A, Z=-C$, and $Y=-B-C X=C A-B$.

