M 340L - CS Homework Set 6 Solutions

1. Suppose P is invertible and $A = PBP^{-1}$. Solve for B in terms of P and A.

Since
$$A = PBP^{-1}$$
, we have $B = P^{-1}(PBP^{-1})P = P^{-1}AP$.

2. Suppose (B-C)D=0, where B and C are $m \times n$ matrices and D is invertible. Prove that B=C.

We have
$$(B-C)D=0$$
, so $B-C=(B-C)DD^{-1}=0$ and $B=C+(B-C)=C+0=C$.

3. Suppose A and B are square matrices, B is invertible, and AB is invertible. Prove that A is invertible. [Hint: Let C = AB, and solve this equation for A in terms of B and C.]

If
$$C = AB$$
, we have $A = ABB^{-1} = CB^{-1}$, so $A^{-1} = (CB^{-1})^{-1} = (B^{-1})^{-1}C^{-1} = B(AB)^{-1}$.

4. Solve the equation AB = BC for A, assuming that A, B, and C are square and B is invertible.

We have
$$A = ABB^{-1} = BCB^{-1}$$
.

- 5. Answer true or false to the following. If false offer a counterexample.
- a. If u and v are linearly independent, and if w is in $Span\{u,v\}$, then u,v,w are linearly dependent.

True. If w is in $Span\{u,v\}$ it must be a linear combination of u and v.

b. If three vectors in \mathbb{R}^3 lie in the same plane in \mathbb{R}^3 , then they are linearly dependent.

False. The three vectors $u = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, w = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are in \mathbb{R}^3 lie and lie in the plane

 $x_3 = 1$, but are linearly independent.

c. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.

False. The set of the single vector $u = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has two entries but is not linearly independent.

d. If a set in \mathbb{R}^n is linearly dependent then the set contains more than n vectors.

False. The set of the single vector $u = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^2$ is linearly dependent but does not contains more than 2 vectors.

e. If v_1 and v_2 are in \mathbb{R}^4 and v_2 is not a scalar multiple of v_1 , then v_1, v_2 are linearly independent.

False. With the vectors $v_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^4$, v_2 is not a scalar multiple of v_1 , but

 v_1, v_2 are linearly dependent since $v_1 = 0v_2$.

f. If v_1, v_2, v_3 are in \mathbb{R}^3 and v_3 is not a linear combination of v_1, v_2 , then v_1, v_2, v_3 are linearly independent.

False. With the vectors $v_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^3$, v_3 is not a linear combination

of v_1, v_2 ,, but v_1, v_2, v_3 are linearly dependent since $v_1 = 0v_2 + 0v_3$.

g. If $\{v_1, v_2, v_3, v_4\}$ is a linearly independent set of vectors in \mathbb{R}^4 , then $\{v_1, v_2, v_3\}$ is also linearly independent.

True. If no linear combination of the elements of $\{v_1, v_2, v_3, v_4\}$ is zero then no linear combination of the elements of $\{v_1, v_2, v_3\}$ is zero.

- 6. Answer true or false to the following. If false offer a counterexample.
- a. The range of the transformation $x \mapsto Ax$ is the set of all linear combinations of the columns of A.

True. The range of the transformation $x \mapsto Ax$ is the set of all vectors of the form Ax and that equals the set of all linear combinations of the columns of A.

b. Every matrix transformation is a linear transformation.

True. We have $A(\alpha x) = \alpha Ax$ and A(x+y) = Ax + Ay so the transformation $x \mapsto Ax$ is linear.

c. A linear transformation preserves the operations of vector addition and scalar multiplication.

True. We have $T(\alpha x) = A(\alpha x) = \alpha Ax = \alpha T(x)$ and T(x+y) = A(x+y) = Ax + Ay = T(x) + T(y) so the operations of vector addition and scalar multiplication are preserved.

d. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ always maps the origin of \mathbb{R}^n to the origin of \mathbb{R}^m .

True. Since T(0) = T(0x) = 0 for any vector x, a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ always maps the origin of \mathbb{R}^n to the origin of \mathbb{R}^m .

- 7. Answer true or false to the following. If false offer a counterexample.
- a. If A is a 4×3 matrix, then the transformation $x\mapsto Ax$ maps \mathbb{R}^3 onto \mathbb{R}^4 .

and 4 and thus for no x is Ax = b.

b. Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.

True. Let A be an $m \times n$ matrix with columns $T(e_1),...,T(e_n)$ (where $e_1,...,e_n$ are the columns of I_n), then the matrix transformation $x \mapsto Ax$ is equivalent to $x \mapsto T(x)$.

c. The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images under T of the columns of the $n \times n$ identity matrix.

True. Let A be an $m \times n$ matrix with columns $T(e_1),...,T(e_n)$ (where $e_1,...,e_n$ are the columns of I_n), then the matrix transformation $x \mapsto Ax$ is equivalent to $x \mapsto T(x)$.

d. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m (meaning two vectors in \mathbb{R}^n do not map to the same vector in \mathbb{R}^m).

True. A function from \mathbb{R}^n to \mathbb{R}^m is one-to-one if and only if two vectors in \mathbb{R}^n do not map to the same vector in \mathbb{R}^m .

8. Find formulas for X, Y, and Z in terms of I, A, B, and C and inverses. Assume A, B, and C have inverses. (Hint: Compute the product on the left, and set it equal to the right side. First, pretend the blocks are simply real numbers but make sure you do not ever divide – you may multiply by inverses, however. Be careful about right and left multiplication.) In all cases, assume the block matrix dimensions are such that the products are defined.

a.
$$\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

We have XA + 0B = I, YA + ZB = 0, XO + 0C = 0, and YO + ZC = I, so XA = I, YA = -ZB, and ZC = I. We conclude that $X = A^{-1}$, $Z = C^{-1}$, and $Y = -ZBA^{-1} = -C^{-1}BA^{-1}$.

b.
$$\begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} X & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}$$

We have

$$AX + B0 = I$$
, $0X + I0 = 0$, $AY + B0 = 0$, $0Y + I0 = 0$, $AZ + BI = 0$, and $0Z + II = I$, so $AX = I$, $AY = 0$, and $AZ = -B$. We conclude that $X = A^{-1}$, $Y = 0$, and $Z = -A^{-1}B$.

c.
$$\begin{bmatrix} I & 0 & 0 \\ A & I & 0 \\ B & C & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ X & I & 0 \\ Y & Z & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}$$

Omitting the obvious relations, We have

$$AI + IX = 0$$
, $BI + CX + IY = 0$, and $BO + CI + IZ = 0$, so

$$A + X = 0$$
, $B + CX + Y = 0$, and $C + Z = 0$. We conclude that

$$X = -A, Z = -C, \text{ and } Y = -B - CX = CA - B.$$