Context-Free Grammars, Languages, and Pushdown Automata

 L Context-Free

 Language

 Context-Free

 Grammar

 Accepts

Pushdown

Automaton

Grammars Define Languages

Think of grammars as either generators or acceptors.

Example: L = {w ({a, b}* : |w| is even}

Regular Expression

 (aa (ab (

 ba (bb)*

Regular Grammar

S ((

S (aT

S (bT

T (a

T (b

T (aS

T (bS

Derivation

 (Generate)

choose aa

choose ab

yields

 a a a b

 S

a T

 a S

 a T

 b

a a a b

Parse

 (Accept)

use corresponding FSM

Derivation is Not Necessarily Unique

Example: L = {w ({a, b}* : there is at least one a}

Regular Expression

(a (b)*a (a (b)*

choose a from (a (b)

choose a from (a (b)

choose a

choose a

choose a from (a (b)

choose a from (a (b)

Regular Grammar

S (a

S (bS

S (aS

S (aT

T (a

T (b

T (aT

T (bT

 S S

 a S a T

 a S a T

 a a

More Powerful Grammars

Regular grammars must always produce strings one character at a time, moving left to right.

But sometimes it's more natural to describe generation more flexibly.

Example 1: L = ab*a

S (aBa

B ((
B (bB

vs.

S (aB

B (a

B (bB

Example 2: L = anb*an
S (B

S (aSa

B ((
B (bB

Key distinction: Example 1 has no recursion on the nonregular rule.

Context-Free Grammars

Remove all restrictions on the form of the right hand sides.

S (abDeFGab

Keep requirement for single non-terminal on left hand side.

S (

but not ASB (

or
 aSb (

or
 ab (
Examples:

Balanced parentheses

anbn

S ((

S (a S b

S (SS

S ((

S ((S)

Context-Free Grammars

A context-free grammar G is a quadruple

(V, (, R, S), where:

· V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in strings in the language) and terminals.

· ((the set of terminals) is a subset of V,

· R (the set of rules) is a finite subset of (V - () (V*,

· S (the start symbol) is an element of V - (.

x (G y is a binary relation where x, y (V* such that x = (A(and y = (((for some rule A((in R.

Any sequence of the form

w0 (G w1 (G w2 (G . . . (G wn

e.g., (S) ((SS) (((S)S)

is called a derivation in G. Each wi’s is called a sentinel form.

The language generated by G is

{w ((* : S (G* w}.

A language L is context free if L = L(G) for some context-free grammar G.

Example Derivations

G = (W, (, R, S), where

W = {S} ((,

(= {a, b},

R = {S (a,

 S (aS,

 S (aSb}

S

S

 a S a S b

 a S b a S b

 a S a S

 a S b a S

 a a

Another Example - Unequal a's and b's

L = {anbm : n (m}

G = (W, (, R, S), where

W = {a, b, S, },

(= {a, b},

R =

Another Example - Unequal a's and b's

L = {anbm : n (m}

G = (W, (, R, S), where

W = {a, b, S, A, B},

(= {a, b},

R =

S (A

/* more a's than b's

S (B

/* more b's than a's

A (a

/* at least one extra a generated

A (aA

A (aAb

B (b

/* at least one extra b generated

B (Bb

B' (aBb

English

S (NP VP

NP (the NP1 | NP1

NP1 (ADJ NP1 | N

ADJ (big | youngest | oldest

N (boy | boys

VP (V | V NP

V (run | runs

the boys run

big boys run

the youngest boy runs

The youngest oldest boy runs

The boy run

Who did you say Bill saw coming out of the hotel?

Arithmetic Expressions

The Language of Simple Arithmetic Expressions

G = (V, (, R, E), where

V = {+, *, id, E},

(= {+, *, id},

R = {
E (id

E (E + E

E (E * E }

E

E

E

+

E

E

*

E

id

E
*
E

E
+
E

id

id

id

id

id

id

+ (id
*
id)

 (id
+
id)
*

id

Arithmetic Expressions - A Better Way

The Language of Simple Arithmetic Expressions

G = (V, (, R, E), where

V = {+, *, (,), id, T, F, E},

(= {+, *, (,), id},

R = {
E (E + T

E(T

T (T * F

T (F

F ((E)

F (id
}

Examples:

id + id * id

id * id * id

BNF

Backus-Naur form (BNF) is used to define the syntax of programming languages using context-free grammars.

Main idea: give descriptive names to nonterminals and put them in angle brackets.

Example: arithmetic expressions

(expression(((expression(+ (term(
(expression(((term(

(term(((term(* (factor(

(term(((factor(
(factor((((expression()

(factor(((id(

The Language of Boolean Logic

G = (V, (, R, E), where

V = {(, (, (, (, (,), id, E, E1, E2, E3, E4},

(= {(, (, (, (, (,), id},

R = {
E (E (E1

E (E1

E1 (E1 (E2

E1 (E2

E2 (E2 (E3

E2 (E3

E3 ((E4

E3 (E4

E4 ((E)

E4 (id }

Boolean Logic isn't Regular

Suppose it were regular. Then there is an N as specified in the pumping theorem.

Let w be a string of length 2N + 1 + 2|id| of the form:

w = ((((((id)))))) (id

 N

 x y

y = (k for some k > 0 because |xy| (N

Then the string that is identical to w except that it has k additional ('s at the beginning would also be in the language. But it can't be because the parentheses would be mismatched. So the language is not regular.

All Regular Languages Are Context Free

(1) Every regular language can be described by a regular grammar. We know this because we can derive a regular grammar from any FSM (as well as vice versa). Regular grammars are special cases of context-free grammars.

 a, b

 S T

 a, b

(2) The context-free languages are precisely the languages accepted by NDPDAs. But every FSM is a PDA that doesn't bother with the stack. So every regular language can be accepted by a NDPDA and is thus context-free.

(3) Context-free languages are closed under union, concatenation, and Kleene *, and (and each single character in (are clearly context free.

