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The Three Hour Tour Through Automata Theory  
 
Read Supplementary Materials: The Three Hour Tour Through Automata Theory 
Read Supplementary Materials: Review of Mathematical Concepts 
Read K & S Chapter 1 
Do Homework 1. 
 

Let's Look at Some Problems 
int alpha, beta; 
alpha = 3; 

  beta = (2 + 5) / 10; 
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc. 
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g., 

     / 
            
        +                10 
 
                   2         5 
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the 
arithmetic expression, since it contains only constants. 
(4) Termination: Decide whether the program is guaranteed to halt. 
(5) Interpretation: Figure out what (if anything) it does. 
 
 

A Framework for Analyzing Problems 
We need a single framework in which we can analyze a very diverse set of problems. 
The framework we will use is Language Recognition 
 
A language is a (possibly infinite) set of finite length strings over a finite alphabet. 

 
 

Languages 
(1) Σ = {0,1,2,3,4,5,6,7,8,9} 

L = {w ∈  Σ*: w represents an odd integer} 
 = {w ∈  Σ*: the last character of w is 1,3,5,7, or 9} 

= (0∪ 1∪ 2∪ 3∪ 4∪ 5∪ 6∪ 7∪ 8∪ 9)*  
   (1∪ 3∪ 5∪ 7∪ 9) 

(2) Σ = {(,)} 
L  = {w ∈  Σ*: w has matched parentheses} 
 = the set of strings accepted by the grammar: 
   S → ( S ) 
   S → SS 
   S → ε 

(3) L = {w: w is a sentence in English} 
 Examples: Mary hit the ball. 
   Colorless green ideas sleep furiously. 
   The window needs fixed. 
(4) L = {w: w is a C program that halts on all inputs} 
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Encoding Output in the Input String 
 

(5) Encoding multiplication as a single input string 
 L = {w of the form: <integer>x<integer>=<integer>, where <integer> is any well formed integer, and the third integer is 

the product of the first two} 
 12x9=108  12=12  12x8=108 

(6) Encoding prime decomposition 
L = {w of the form: <integer1>/<integer2>,<integer3> …, where integers 2 - n represent the prime decomposition of 
integer 1. 

15/3,5   2/2 
More Languages 

 
(7) Sorting as a language recognition task: 

L = {w1 # w2: ∃ n ≥1, 
w1 is of the form int1, int2, … intn,  
w2 is of the form int1, int2, … intn, and 
w2 contains the same objects as w1 and w2 is sorted} 
 

Examples: 
 1,5,3,9,6#1,3,5,6,9 ∈  L 
 1,5,3,9,6#1,2,3,4,5,6,7 ∉  L 

 
(8) Database querying as a language recognition task: 

L = {d # q # a: 
 d is an encoding of a database, 
 q is a string representing a query, and 
 a is the correct result of applying q to d} 
Example: 
 (name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876 )# (select name age=23) # (John)  ∈  L 

 
The Traditional Problems and their Language Formulations are Equivalent 

 
By equivalent we mean: 
 
If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other 
functions that can be built using a machine of equal or lesser power. 
 
Consider the multiplication example: 
 L = {w of the form: 
            <integer>x<integer>=<integer>, where  

 <integer> is any well formed integer, and 
 the third integer is the product of the first two} 

 
Given a multiplication machine, we can build the language recognition machine: 
 
 
 
Given the language recognition machine, we can build a multiplication machine: 
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A Framework for Describing Languages 
 
Clearly, if we are going to work with languages, each one must have a finite description. 
 
Finite Languages:  Easy.  Just list the elements of the language. 
  L = {June, July, August} 
 
Infinite Languages:  Need a finite description. 
 
 Grammars let us use recursion to do this. 
 

Grammars 1 
 
(1) The Language of Matched Parentheses 
 

 S → ( S ) 
 S → SS 
 S → ε 
 

(2) The Language of Odd Integers 
  S → 1 
  S → 3 
  S → 5 
  S → 7 
  S → 9 
  S → 0 S 
  S → 1 S 
  S → 2 S 
  S → 3 S 
  S → 4 S 
  S → 5 S 
  S → 6 S 
  S → 7 S 
  S → 8 S 
  S → 9 S 

Grammars 2 
 
 
 
 
 
 
 
   S → O 
   S → A O 
   A →A D 
   A → D 
   D → O  
   D → E  
   O → 1 
   O → 3 
   O → 5 
   O → 7 
   O → 9 
   E→ 0 
   E→ 2 
   E→ 4 
   E→ 6 
   E→ 8 

 
Grammars 3 

(3) The Language of Simple Arithmetic Expressions 
  S → <exp> 

<exp> → <number> 
  <exp> → (<exp>) 
  <exp> → - <exp> 
  <exp> → <exp> <op> <exp> 
  <op> → + | - | * | / 
  <number> → <digit> 
  <number> → <digit> <number> 
  <digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Grammars as Generators and Acceptors 
 
Top Down Parsing 
 
 
 
 
    4   +   3 
 
Bottom Up Parsing 
 
 
 
 
 
    4   +   3 

 
 

The Language Hierarchy 
 
 

Recursively Enumerable  
Languages 

 
Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular 
Languages 
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Regular Grammars 
 
In a regular grammar, all rules must be of the form: 
 
<one nonterminal> →   <one terminal>  or ε 
 
  or 
  
<one nonterminal> →    <one terminal><one nonterminal> 
 
So, the following rules are okay: 

 S → ε  
S → a 

  S → aS 
 
But these are not: 
  S → ab 
  S → SS 
  aS → b 

Regular Expressions and Languages 
 
Regular expressions are formed from ∅  and the characters in the target alphabet, plus the operations of: 
• Concatenation: αβ means α followed by β 
• Or (Set Union): α∪β  means α Or (Union) β 
• Kleene *: α* means 0 or more occurrences of α concatenated together. 
• At Least 1: α+ means 1 or more occurrences of α concatenated together. 
• (): used to group the other operators 
 
Examples: 
 
(1) Odd integers:  
     (0∪ 1∪ 2∪ 3∪ 4∪ 5∪ 6∪ 7∪ 8∪ 9)*(1∪ 3∪ 5∪ 7∪ 9) 
 
(2) Identifiers: 
     (A-Z)+((A-Z) ∪ (0-9))* 
 
(3) Matched Parentheses 

Context Free Grammars 
 
(1) The Language of Matched Parentheses 

 S → ( S ) 
 S → SS 
 S → ε 
 

(2) The Language of Simple Arithmetic Expressions 
  S → <exp> 

<exp> → <number> 
  <exp> → (<exp>) 
  <exp> → - <exp> 
  <exp> → <exp> <op> <exp> 
  <op> → + | - | * | / 
  <number> → <digit> 
  <number> → <digit> <number> 
  <digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Not All Languages are Context-Free  
English:  S  → NP  VP 
  NP  → the NP1 | NP1 
  NP1  → ADJ  NP1 | N 
  N → boy | boys 
  VP →V | V  NP 
  V → run | runs 
 What about “boys runs” 
 
A much simpler example: anbncn, n ≥ 1 

 
Unrestricted Grammars 

 
Example: A grammar to generate all strings of the form  anbncn, n ≥ 1 

S → aBSc 
S → aBc 
Ba → aB 
Bc → bc 
Bb → bb 

 
The Language Hierarchy 

 
 

Recursively Enumerable  
Languages 

 
Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular  
Languages 
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A Machine Hierarchy 
 

 
Finite State Machines 1 

 
An FSM to accept odd integers: 
 
 
 
 
 
        
 
 
 

 
 

 
Finite State Machines 2 

An FSM to accept identifiers: 
 
 
 
 
 
 

 
 

 
 

Pushdown Automata 
 
A PDA to accept strings with balanced parentheses: 

 
                                                               (//( 
                                            s 
                      )/(/ 

 
Example:  (())() 
 
Stack: 
 

Pushdown Automaton 2 
 
A PDA to accept strings of the form w#wR: 
 
                                      a//a                                       a/a/ 
                                                              #// 
                                                 s                                            f 
 
                                      b//b                                       b/b/ 
 
 

 

1,3,5,7,9 
1,3,5,7,9 

0,2,4,6,8 
0,2,4,6,8 

letter 

letter or digit 

delimiter or blank  blank, delimiter 
 or digit 

anything 
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A Nondeterministic PDA 
A PDA to accept strings of the form    wwR 
 
 
                                     a//a                                        a/a/ 
                                                              ε// 
                                                 s                                            f 
 
                                    b//b                                        b/b/ 
 

 
 

PDA 3 
A PDA to accept strings of the form anbncn 

 
 
 
 

Turing Machines 
 

A Turing Machine to accept strings of the form anbncn 
 
  S 
                                                         d//R 
   ❑//R                                                             
                                               a,e//R                  b,f//R 
               a,b,e,f//L 
a   a/d/R  b    b/e/R  c   c/f/L  ← 
 
                        b,c                           c,d,f,❑                   a,d,e,❑ 
 
   ❑,e,f//R  
 
 
   f    a,b,c,d  n 
       e,f//R 
           ❑ 
 
 
      y 
 
 
 
 
  � ❑ a a b b c c a ❑ 
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A Two Tape Turing Machine 
A Turing Machine to accept {w#wR} 
 
   �       ❑     a        b       a      a        #       a       a       b       a       ❑      ❑   
 
 
A Two Tape Turing Machine to do the same thing 
 
 
   �       ❑      a      b       a       a       #       a       a        b        a       ❑      ❑   
 
  
 
   �       ❑     a       b       a      a        #       a       a        b        a      ❑      ❑   
 
 
 

 
Simulating k Tapes with One 

A multitrack tape: 
 
   � ❑ a b a ❑ ❑  
  � 0 0 1 0 0 0  0     ❑     ❑ 
   � a b b a b a 
   0 1 0 0 0 0 0 
 
Can be encoded on a single tape with an alphabet consisting of symbols corresponding to : 
 
 {{�,a,b,#,❑} x {0,1}  x  

  {�,a,b,#,❑} x {0,1}} 
 
Example:                          2nd square: (❑,0,a,1)) 

 
 

Simulating a Turing Machine with a PDA with Two Stacks 
 

  �    a     b    a    a    #    a    a    b    a 

                         ���� 
 
                           a                         # 
                           a                         a 
                           b                         a 
                           a                         b 
                           �                         a 
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The Universal Turing Machine 
Encoding States, Symbols, and Transitions 

 
Suppose the input machine M has 5 states, 4 tape symbols, and a transition of the form: 
 

(s,a,q,b), which can be read as: 
 
in state s, reading an a, go to state q, and write b. 
 
We encode this transition as: 
 
 q000,a00,q010,a01 
 
A series of transitions that describe an entire machine will look like 
 
 q000,a00,q010,a01#q010,a00,q000,a00 

 
The Universal Turing Machine 

        a    a    b 
 
      a00a00a01 
 
                 #              #              # 
 
      q000 
 

Church's Thesis 
(Church-Turing Thesis) 

 
An algorithm is a formal procedure that halts. 
 
The Thesis:  Anything that can be computed by any algorithm can be computed by a Turing machine. 
 
Another way to state it:  All "reasonable" formal models of computation are equivalent to the Turing machine.  This isn't a formal 
statement, so we can't prove it.  But many different computational models have been proposed and they all turn out to be 
equivalent. 
 Example: unrestricted grammars 

A Machine Hierarchy 
 
 
 
 
 
 
 
 

FSMs 
 
 

PDAs 
 
 

Turing Machines 
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Languages and Machines 
 

 
Recursively Enumerable  

Languages 
 

Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular  
Languages 

 
FSMs 

 
 

PDAs 
 
 
 
 

Turing Machines 
 
 

Where Does a Particular Problem Go? 
 
Showing what it is  -- generally by construction of: 
• A grammar, or a machine 
Showing what it isn't -- generally by contradiction, using: 
• Counting 
 Example: anbn 
• Closure properties 
• Diagonalization 
• Reduction 

 
 

Closure Properties 
 

Regular Lanugages are Closed Under: 
�� Union 
�� Concatenation 
�� Kleene closure 
�� Complementation 
�� Reversal 
�� Intersection 

 
Context Free Languages are Closed Under: 

�� Union 
�� Concatenation 
�� Kleene Closure 
�� Reversal 
�� Intersection with regular languages 

Etc. 
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Using Closure Properties 
 
Example: 
L = {anbmcp: n≠m  or m ≠ p} is not deterministic context-free.  
 
Two theorems we'll prove later: 
 
Theorem 3.7.1: The class of deterministic context-free languages is closed under complement. 
 
Theorem 3.5.2: The intersection  of a context-free language with a regular language is a context-free language. 
 
If L were a deterministic CFL, then the complement of L (L') would be a deterministic CFL.  
 
But L' ∩ a*b*c* =  {anbncn}, which we know is not context-free, much less deterministic context-free.  Thus a contradiction. 

 
Diagonalization  

 
The power set of the integers is not countable. 
Imagine that there were some enumeration: 
 

 1 2 3 4 5 
Set 1 1     
Set 2  1  1  
Set 3 1  1   
Set 4  1    
Set 5 1 1 1 1 1 

 
But then we could create a new set 
 

New Set    1  
 
But this new set must necessarily be different from all the other sets in the supposedly complete enumeration.  Yet it should be 
included.  Thus a contradiction. 

 
More on Cantor 

 
Of course, if we're going to enumerate, we probably want to do it very systematically, e.g., 
 

 1 2 3 4 5 6 7 
Set 1 1       
Set 2  1      
Set 3 1 1      
Set 4   1     
Set 5 1  1     
Set 6  1 1     
Set 7 1 1 1     

 
 
Read the rows as bit vectors, but read them backwards.  So Set 4 is 100.  Notice that this is the binary encoding of 4. 
This enumeration will generate all finite sets of integers, and in fact the set of all finite sets of integers is countable.  
But when will it generate the set that contains all the integers except 1? 
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The Unsolvability of the Halting Problem 
 
Suppose we could implement 

HALTS(M,x) 
M: string representing a Turing Machine 
x: string representing the input for M 
If M(x) halts then True 
          else False 

Then we could define 
 TROUBLE(x) 
  x: string 
  If HALTS(x,x) then loop forever 
                                                     else halt 
 

So now what happens if we invoke TROUBLE(TROUBLE), which invokes 
HALTS(TROUBLE,TROUBLE) 

 
If HALTS says that TROUBLE halts on itself then TROUBLE loops.  IF HALTS says that TROUBLE loops, then TROUBLE 
halts. 

Viewing the Halting Problem as Diagonalization 
 
First we need an enumeration of the set of all Turing Machines.  We'll just use lexicographic order of the encodings we used as 
inputs to the Universal Turing Machine.  So now, what we claim is that HALTS can compute the following table, where 1 means 
the machine halts on the input: 
 

 I1 I2 I3 TROUBLE I5 
Machine 1 1     
Machine 2  1  1  
Machine 3      
TROUBLE   1  1 
Machine 5 1 1 1 1  

 
But we've defined TROUBLE so that it will actually behave as: 
 
TROUBLE   1 1 1 
 
Or maybe HALT said that TROUBLE(TROUBLE) would halt.  But then TROUBLE would loop. 
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Decidability 
 

 
Recursively Enumerable  

Languages 
 

Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular  
Languages 

 
 
 
 
 
 

Can always say yes or no 
 

Can enumerate from the grammar. 
Can say yes by enumerating and checking 

 
 
 
 

Let's Revisit Some Problems 
int alpha, beta; 
alpha = 3; 

  beta = (2 + 5) / 10; 
 
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc. 
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g., 

 
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the 
arithmetic expression, since it contains only constants. 
(4) Termination: Decide whether the program is guaranteed to halt. 
(5) Interpretation: Figure out what (if anything) useful it does. 

/ 
         
                              +                    10 
 
                        2         5 
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So What's Left? 
 
• Formalize and Prove Things 
 
• Regular Languages and Finite State Machines 

• FSMs 
• Nondeterminism 
• State minimization 
• Implementation 

• Equivalence of regular expressions and FSMs 
• Properties of Regular Languages 

• Context-Free Languages and PDAs 
• Equivalence of CFGs and nondeterministic PDAs 
• Properties of context-free languages 
• Parsing and determinism 

• Turing Machines and Computability 
• Recursive and recursively enumerable languages 
• Extensions of Turing Machines 
• Undecidable problems for Turing Machines and unrestricted grammars 

 
 
 


