
Lecture Notes 1 The Three Hour Tour 1

The Three Hour Tour Through Automata Theory

Read Supplementary Materials: The Three Hour Tour Through Automata Theory
Read Supplementary Materials: Review of Mathematical Concepts
Read K & S Chapter 1
Do Homework 1.

Let's Look at Some Problems
int alpha, beta;
alpha = 3;

 beta = (2 + 5) / 10;
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g.,

 /

 + 10

 2 5
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) it does.

A Framework for Analyzing Problems
We need a single framework in which we can analyze a very diverse set of problems.
The framework we will use is Language Recognition

A language is a (possibly infinite) set of finite length strings over a finite alphabet.

Languages
(1) Σ = {0,1,2,3,4,5,6,7,8,9}

L = {w ∈ Σ*: w represents an odd integer}
 = {w ∈ Σ*: the last character of w is 1,3,5,7, or 9}

= (0∪ 1∪ 2∪ 3∪ 4∪ 5∪ 6∪ 7∪ 8∪ 9)*
 (1∪ 3∪ 5∪ 7∪ 9)

(2) Σ = {(,)}
L = {w ∈ Σ*: w has matched parentheses}
 = the set of strings accepted by the grammar:
 S → (S)
 S → SS
 S → ε

(3) L = {w: w is a sentence in English}
 Examples: Mary hit the ball.
 Colorless green ideas sleep furiously.
 The window needs fixed.
(4) L = {w: w is a C program that halts on all inputs}

Lecture Notes 1 The Three Hour Tour 2

Encoding Output in the Input String

(5) Encoding multiplication as a single input string
 L = {w of the form: <integer>x<integer>=<integer>, where <integer> is any well formed integer, and the third integer is

the product of the first two}
 12x9=108 12=12 12x8=108

(6) Encoding prime decomposition
L = {w of the form: <integer1>/<integer2>,<integer3> …, where integers 2 - n represent the prime decomposition of
integer 1.

15/3,5 2/2
More Languages

(7) Sorting as a language recognition task:

L = {w1 # w2: ∃ n ≥1,
w1 is of the form int1, int2, … intn,
w2 is of the form int1, int2, … intn, and
w2 contains the same objects as w1 and w2 is sorted}

Examples:
 1,5,3,9,6#1,3,5,6,9 ∈ L
 1,5,3,9,6#1,2,3,4,5,6,7 ∉ L

(8) Database querying as a language recognition task:

L = {d # q # a:
 d is an encoding of a database,
 q is a string representing a query, and
 a is the correct result of applying q to d}
Example:
 (name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876)# (select name age=23) # (John) ∈ L

The Traditional Problems and their Language Formulations are Equivalent

By equivalent we mean:

If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other
functions that can be built using a machine of equal or lesser power.

Consider the multiplication example:
 L = {w of the form:
 <integer>x<integer>=<integer>, where

 <integer> is any well formed integer, and
 the third integer is the product of the first two}

Given a multiplication machine, we can build the language recognition machine:

Given the language recognition machine, we can build a multiplication machine:

Lecture Notes 1 The Three Hour Tour 3

A Framework for Describing Languages

Clearly, if we are going to work with languages, each one must have a finite description.

Finite Languages: Easy. Just list the elements of the language.
 L = {June, July, August}

Infinite Languages: Need a finite description.

 Grammars let us use recursion to do this.

Grammars 1

(1) The Language of Matched Parentheses

 S → (S)
 S → SS
 S → ε

(2) The Language of Odd Integers
 S → 1
 S → 3
 S → 5
 S → 7
 S → 9
 S → 0 S
 S → 1 S
 S → 2 S
 S → 3 S
 S → 4 S
 S → 5 S
 S → 6 S
 S → 7 S
 S → 8 S
 S → 9 S

Grammars 2

 S → O
 S → A O
 A →A D
 A → D
 D → O
 D → E
 O → 1
 O → 3
 O → 5
 O → 7
 O → 9
 E→ 0
 E→ 2
 E→ 4
 E→ 6
 E→ 8

Grammars 3

(3) The Language of Simple Arithmetic Expressions
 S → <exp>

<exp> → <number>
 <exp> → (<exp>)
 <exp> → - <exp>
 <exp> → <exp> <op> <exp>
 <op> → + | - | * | /
 <number> → <digit>
 <number> → <digit> <number>
 <digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Lecture Notes 1 The Three Hour Tour 4

Grammars as Generators and Acceptors

Top Down Parsing

 4 + 3

Bottom Up Parsing

 4 + 3

The Language Hierarchy

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

Lecture Notes 1 The Three Hour Tour 5

Regular Grammars

In a regular grammar, all rules must be of the form:

<one nonterminal> → <one terminal> or ε

 or

<one nonterminal> → <one terminal><one nonterminal>

So, the following rules are okay:

 S → ε
S → a

 S → aS

But these are not:
 S → ab
 S → SS
 aS → b

Regular Expressions and Languages

Regular expressions are formed from ∅ and the characters in the target alphabet, plus the operations of:
• Concatenation: αβ means α followed by β
• Or (Set Union): α∪β means α Or (Union) β
• Kleene *: α* means 0 or more occurrences of α concatenated together.
• At Least 1: α+ means 1 or more occurrences of α concatenated together.
• (): used to group the other operators

Examples:

(1) Odd integers:
 (0∪ 1∪ 2∪ 3∪ 4∪ 5∪ 6∪ 7∪ 8∪ 9)*(1∪ 3∪ 5∪ 7∪ 9)

(2) Identifiers:
 (A-Z)+((A-Z) ∪ (0-9))*

(3) Matched Parentheses

Context Free Grammars

(1) The Language of Matched Parentheses

 S → (S)
 S → SS
 S → ε

(2) The Language of Simple Arithmetic Expressions
 S → <exp>

<exp> → <number>
 <exp> → (<exp>)
 <exp> → - <exp>
 <exp> → <exp> <op> <exp>
 <op> → + | - | * | /
 <number> → <digit>
 <number> → <digit> <number>
 <digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Lecture Notes 1 The Three Hour Tour 6

Not All Languages are Context-Free
English: S → NP VP
 NP → the NP1 | NP1
 NP1 → ADJ NP1 | N
 N → boy | boys
 VP →V | V NP
 V → run | runs
 What about “boys runs”

A much simpler example: anbncn, n ≥ 1

Unrestricted Grammars

Example: A grammar to generate all strings of the form anbncn, n ≥ 1

S → aBSc
S → aBc
Ba → aB
Bc → bc
Bb → bb

The Language Hierarchy

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

Lecture Notes 1 The Three Hour Tour 7

A Machine Hierarchy

Finite State Machines 1

An FSM to accept odd integers:

Finite State Machines 2

An FSM to accept identifiers:

Pushdown Automata

A PDA to accept strings with balanced parentheses:

 (//(
 s
)/(/

Example: (())()

Stack:

Pushdown Automaton 2

A PDA to accept strings of the form w#wR:

 a//a a/a/
 #//
 s f

 b//b b/b/

1,3,5,7,9
1,3,5,7,9

0,2,4,6,8
0,2,4,6,8

letter

letter or digit

delimiter or blank blank, delimiter
 or digit

anything

Lecture Notes 1 The Three Hour Tour 8

A Nondeterministic PDA
A PDA to accept strings of the form wwR

 a//a a/a/
 ε//
 s f

 b//b b/b/

PDA 3
A PDA to accept strings of the form anbncn

Turing Machines

A Turing Machine to accept strings of the form anbncn

 S
 d//R
 ❑//R
 a,e//R b,f//R
 a,b,e,f//L
a a/d/R b b/e/R c c/f/L ←

 b,c c,d,f,❑ a,d,e,❑

 ❑,e,f//R

 f a,b,c,d n
 e,f//R
 ❑

 y

 � ❑ a a b b c c a ❑

Lecture Notes 1 The Three Hour Tour 9

A Two Tape Turing Machine
A Turing Machine to accept {w#wR}

 � ❑ a b a a # a a b a ❑ ❑

A Two Tape Turing Machine to do the same thing

 � ❑ a b a a # a a b a ❑ ❑

 � ❑ a b a a # a a b a ❑ ❑

Simulating k Tapes with One

A multitrack tape:

 � ❑ a b a ❑ ❑
 � 0 0 1 0 0 0 0 ❑ ❑
 � a b b a b a
 0 1 0 0 0 0 0

Can be encoded on a single tape with an alphabet consisting of symbols corresponding to :

 {{�,a,b,#,❑} x {0,1} x

 {�,a,b,#,❑} x {0,1}}

Example: 2nd square: (❑,0,a,1))

Simulating a Turing Machine with a PDA with Two Stacks

 � a b a a # a a b a

 ����

 a #
 a a
 b a
 a b
 � a

Lecture Notes 1 The Three Hour Tour 10

The Universal Turing Machine
Encoding States, Symbols, and Transitions

Suppose the input machine M has 5 states, 4 tape symbols, and a transition of the form:

(s,a,q,b), which can be read as:

in state s, reading an a, go to state q, and write b.

We encode this transition as:

 q000,a00,q010,a01

A series of transitions that describe an entire machine will look like

 q000,a00,q010,a01#q010,a00,q000,a00

The Universal Turing Machine

 a a b

 a00a00a01

 # # #

 q000

Church's Thesis
(Church-Turing Thesis)

An algorithm is a formal procedure that halts.

The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.

Another way to state it: All "reasonable" formal models of computation are equivalent to the Turing machine. This isn't a formal
statement, so we can't prove it. But many different computational models have been proposed and they all turn out to be
equivalent.
 Example: unrestricted grammars

A Machine Hierarchy

FSMs

PDAs

Turing Machines

Lecture Notes 1 The Three Hour Tour 11

Languages and Machines

Recursively Enumerable

Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

FSMs

PDAs

Turing Machines

Where Does a Particular Problem Go?

Showing what it is -- generally by construction of:
• A grammar, or a machine
Showing what it isn't -- generally by contradiction, using:
• Counting
 Example: anbn
• Closure properties
• Diagonalization
• Reduction

Closure Properties

Regular Lanugages are Closed Under:
�� Union
�� Concatenation
�� Kleene closure
�� Complementation
�� Reversal
�� Intersection

Context Free Languages are Closed Under:

�� Union
�� Concatenation
�� Kleene Closure
�� Reversal
�� Intersection with regular languages

Etc.

Lecture Notes 1 The Three Hour Tour 12

Using Closure Properties

Example:
L = {anbmcp: n≠m or m ≠ p} is not deterministic context-free.

Two theorems we'll prove later:

Theorem 3.7.1: The class of deterministic context-free languages is closed under complement.

Theorem 3.5.2: The intersection of a context-free language with a regular language is a context-free language.

If L were a deterministic CFL, then the complement of L (L') would be a deterministic CFL.

But L' ∩ a*b*c* = {anbncn}, which we know is not context-free, much less deterministic context-free. Thus a contradiction.

Diagonalization

The power set of the integers is not countable.
Imagine that there were some enumeration:

 1 2 3 4 5
Set 1 1
Set 2 1 1
Set 3 1 1
Set 4 1
Set 5 1 1 1 1 1

But then we could create a new set

New Set 1

But this new set must necessarily be different from all the other sets in the supposedly complete enumeration. Yet it should be
included. Thus a contradiction.

More on Cantor

Of course, if we're going to enumerate, we probably want to do it very systematically, e.g.,

 1 2 3 4 5 6 7
Set 1 1
Set 2 1
Set 3 1 1
Set 4 1
Set 5 1 1
Set 6 1 1
Set 7 1 1 1

Read the rows as bit vectors, but read them backwards. So Set 4 is 100. Notice that this is the binary encoding of 4.
This enumeration will generate all finite sets of integers, and in fact the set of all finite sets of integers is countable.
But when will it generate the set that contains all the integers except 1?

Lecture Notes 1 The Three Hour Tour 13

The Unsolvability of the Halting Problem

Suppose we could implement

HALTS(M,x)
M: string representing a Turing Machine
x: string representing the input for M
If M(x) halts then True
 else False

Then we could define
 TROUBLE(x)
 x: string
 If HALTS(x,x) then loop forever
 else halt

So now what happens if we invoke TROUBLE(TROUBLE), which invokes
HALTS(TROUBLE,TROUBLE)

If HALTS says that TROUBLE halts on itself then TROUBLE loops. IF HALTS says that TROUBLE loops, then TROUBLE
halts.

Viewing the Halting Problem as Diagonalization

First we need an enumeration of the set of all Turing Machines. We'll just use lexicographic order of the encodings we used as
inputs to the Universal Turing Machine. So now, what we claim is that HALTS can compute the following table, where 1 means
the machine halts on the input:

 I1 I2 I3 TROUBLE I5
Machine 1 1
Machine 2 1 1
Machine 3
TROUBLE 1 1
Machine 5 1 1 1 1

But we've defined TROUBLE so that it will actually behave as:

TROUBLE 1 1 1

Or maybe HALT said that TROUBLE(TROUBLE) would halt. But then TROUBLE would loop.

Lecture Notes 1 The Three Hour Tour 14

Decidability

Recursively Enumerable

Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

Can always say yes or no

Can enumerate from the grammar.
Can say yes by enumerating and checking

Let's Revisit Some Problems
int alpha, beta;
alpha = 3;

 beta = (2 + 5) / 10;

(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g.,

(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

/

 + 10

 2 5

Lecture Notes 1 The Three Hour Tour 15

So What's Left?

• Formalize and Prove Things

• Regular Languages and Finite State Machines

• FSMs
• Nondeterminism
• State minimization
• Implementation

• Equivalence of regular expressions and FSMs
• Properties of Regular Languages

• Context-Free Languages and PDAs
• Equivalence of CFGs and nondeterministic PDAs
• Properties of context-free languages
• Parsing and determinism

• Turing Machines and Computability
• Recursive and recursively enumerable languages
• Extensions of Turing Machines
• Undecidable problems for Turing Machines and unrestricted grammars

