
Lecture Notes 2 What is a Language? 1

What Is a Language?
Do Homework 2.

Grammars, Languages, and Machines

 Language
 L

 Grammar

 Accepts

 Machine

Strings: the Building Blocks of Languages

An alphabet is a finite set of symbols: English alphabet: {A, B, C, …, Z}

Binary alphabet: {0, 1}

A string over an alphabet is a finite sequence of symbols drawn from the alphabet.

 English string: happynewyear
 binary string: 1001101

We will generally omit “ ” from strings unless doing so would lead to confusion.

The set of all possible strings over an alphabet Σ is written Σ*.
 binary string: 1001101 ∈ {0,1}*

The shortest string contains no characters. It is called the empty string and is written “ ” or ε (epsilon).

The set of all possible strings over an alphabet Σ is written Σ*.

More on Strings

The length of a string is the number of symbols in it.

|ε| = 0
|1001101| = 7

A string a is a substring of a string b if a occurs contiguously as part of b.
 aaa is a substring of aaabbbaaa
 aaaaaa is not a substring of aaabbbaaa

Every string is a substring (although not a proper substring) of itself.

ε is a substring of every string. Alternatively, we can match ε anywhere.

Notice the analogy with sets here.

Lecture Notes 2 What is a Language? 2

Operations on Strings

Concatenation: The concatenation of two strings x and y is written x || y, x⋅y, or xy and is the string formed by appending the
string y to the string x.

|xy| = |x| + |y|

 If x = ε and y = “food”, then xy =

If x = “good” and y = “bye”, then |xy| =

Note: x⋅ε = ε⋅x = x for all strings x.

Replication: For each string w and each natural number i, the string wi is defined recursively as
 w0 = ε

wi = wi-1 w for each i ≥ 1

Like exponentiation, the replication operator has a high precedence.

Examples:
 a3 =
 (bye)2 =
 a0b3 =

String Reversal

An inductive definition:

 (1) If |w| = 0 then wR = w = ε
 (2) If |w| ≥ 1 then ∃ a ∈ Σ: w = u⋅a
 (a is the last character of w)
 and
 wR = a⋅uR

 Example:
 (abc)R =

More on String Reversal

Theorem: If w, x are strings, then (w⋅x)R = xR⋅wR

 Example: (dogcat)R = (cat)R⋅(dog)R = tacgod

Proof (by induction on |x|):

 Basis: |x| = 0. Then x = ε, and (w⋅x)R = (w⋅ε)R = (w)R = ε⋅wR = εR⋅wR = xR⋅wR

Induction Hypothesis: If |x| ≤ n, then (w⋅x)R = xR⋅wR

Induction Step: Let |x| = n + 1. Then x = u a for some character a and |u| = n

 (w⋅x)R = (w⋅ (u⋅a))R
 = ((w⋅u)⋅a)R associativity
 = a⋅(w⋅u)R definition of reversal
 = a⋅uR⋅wR induction hypothesis
 = (u⋅a)R⋅wR definition of reversal
 = xR⋅wR

d o g c a t
 w x
 u a

Lecture Notes 2 What is a Language? 3

Defining a Language

A language is a (finite or infinite) set of finite length strings over a finite alphabet Σ.

Example: Let Σ = {a, b}

 Some languages over Σ: ∅ , {ε}, {a, b}, {ε, a, aa, aaa, aaaa, aaaaa}

 The language Σ* contains an infinite number of strings, including: ε, a, b, ab, ababaaa

Example Language Definitions
L = {x ∈ {a, b}* : all a's precede all b's}

L = {x : ∃ y ∈ {a, b}* : x = ya}

L = {an, n ≥ 0 }

L = an (If we say nothing about the range of n, we will assume that it is drawn from N, i.e., n ≥ 0.)

L = {x#y: x,y ∈ {0-9}* and square(x) = y}

L = {} = ∅ (the empty language—not to be confused with {ε}, the language of the empty string)

Techniques for Defining Languages

Languages are sets. Recall that, for sets, it makes sense to talk about enumerations and decision procedures. So, if we want
to provide a computationally effective definition of a language we could specify either a

• Language generator, which enumerates (lists) the elements of the language, or a
• Language recognizer, which decides whether or not a candidate string is in the language and returns True if it is and

False if it isn't.

Example: The logical definition: L = {x : ∃ y ∈ {a, b}* : x = ya} can be turned into either a language generator or a
language recognizer.

How Large are Languages?

• The smallest language over any alphabet is ∅ . |∅ | = 0
• The largest language over any alphabet is Σ*. |Σ*| = ?

- If Σ = ∅ then Σ* = {ε} and |Σ*| = 1
 - If Σ ≠ ∅ then |Σ*| is countably infinite because its elements can be enumerated in 1 to 1 correspondence with the

integers as follows:
1. Enumerate all strings of length 0, then length 1, then length 2, and so forth.
2. Within the strings of a given length, enumerate them lexicographically. E.g., aa, ab, ba, bb

• So all languages are either finite or countably infinite. Alternatively, all languages are countable.

Operations on Languages 1

Normal set operations: union, intersection, difference, complement…
Examples: Σ = {a, b} L1 = strings with an even number of a's

L2 = strings with no b's
L1 ∪ L2 =
L1 ∩ L2 =
L2 - L1 =
¬ (L2 - L1) =

Lecture Notes 2 What is a Language? 4

Operations on Languages 2

Concatenation: (based on the definition of concatenation of strings)

If L1 and L2 are languages over Σ, their concatenation L = L1 L2, sometimes L1⋅L2, is
 {w ∈ Σ*: w = x y for some x ∈ L1 and y ∈ L2}

Examples:
L1 = {cat, dog} L2 = {apple, pear} L1 L2 = {catapple, catpear, dogapple, dogpear}
L1 = {an: n ≥ 1} L2 = {an: n ≤ 3} L1 L2 =

Identities:
L∅ = ∅ L = ∅ ∀ L (analogous to multiplication by 0)
L{ε}= {ε}L = L ∀ L (analogous to multiplication by 1)

Replicated concatenation:
Ln = L⋅L⋅L⋅ … ⋅L (n times)
L1 = L
L0 = {ε}

Example:
 L = {dog, cat, fish}
 L0 = {ε}
 L1 = {dog, cat, fish}
 L2 = {dogdog, dogcat, dogfish, catdog, catcat, catfish, fishdog, fishcat, fishfish}

Concatenating Languages Defined Using Variables

L1 = an = {an : n ≥ 0} L2 = bn = {bn : n ≥ 0}
L1 L2 = {an : n ≥ 0}{bn : n ≥ 0} = { an bm : n,m ≥ 0} (common mistake:) ≠≠≠≠ anbn = { an bn : n ≥ 0}

Note: The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.

L = 1n2m
L = anbman

Operations on Languages 3

Kleene Star (or Kleene closure): L* = {w ∈ Σ* : w = w1 w2 … wk for some k ≥ 0 and some w1, w2, … wk ∈ L}

Alternative definition: L* = L0 ∪ L1 ∪ L2 ∪ L3 ∪ …

Note: ∀ L, ε ∈ L*

Example:
 L = {dog, cat, fish}
 L* = {ε, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, …}

Another useful definition: L+ = L L* (L+ is the closure of L under concatenation)

Alternatively, L+ = L1 ∪ L2 ∪ L3 ∪ …

L+ = L*-{ε} if ε ∉ L
L+ = L* if ε ∈ L

Lecture Notes 3 Regular Languages 1

Regular Languages
Read Supplementary Materials: Regular Languages and Finite State Machines: Regular Languages
Do Homework 3.

Regular Grammars, Languages, and Machines

 L Regular
 Language

Regular Expression
 or
Regular Grammar Accepts

 Finite
 State
 Machine

“Pure” Regular Expressions

The regular expressions over an alphabet Σ are all strings over the alphabet Σ ∪ {“(“, “)”, ∅ , ∪ , *} that can be obtained as
follows:

1. ∅ and each member of Σ is a regular expression.
2. If α , β are regular expressions, then so is αβ
3. If α , β are regular expressions, then so is α∪β .
4. If α is a regular expression, then so is α*.
5. If α is a regular expression, then so is (α).
6. Nothing else is a regular expression.

If Σ = {a,b} then these are regular expressions: ∅ , a, bab, a∪ b , (a∪ b)*a*b*

So far, regular expressions are just (finite) strings over some alphabet, Σ ∪ {“(“, “)”, ∅ , ∪ , *}.

Regular Expressions Define Languages

Regular expressions define languages via a semantic interpretation function we'll call L:
1. L(∅) = ∅ and L(a) = {a} for each a ∈ Σ
2. If α , β are regular expressions, then

L(αβ) = L(α)⋅L(β)
 = all strings that can be formed by concatenating to some string from L(α) some string from L(β).
Note that if either α or β is ∅ , then its language is ∅ , so there is nothing to concatenate and the result is ∅ .

3. If α , β are regular expressions, then L(α∪β) = L(α) ∪ L(β)
4. If α is a regular expression, then L(α*) = L(α)*
5. L((α)) = L(α)

A language is regular if and only if it can be described by a regular expression.

A regular expression is always finite, but it may describe a (countably) infinite language.

Lecture Notes 3 Regular Languages 2

Regular Languages
An equivalent definition of the class of regular languages over an alphabet Σ:
The closure of the languages
 {a} ∀ a ∈ Σ and ∅ [1]
with respect to the functions:
• concatenation, [2]
• union, and [3]
• Kleene star. [4]

In other words, the class of regular languages is the smallest set that includes all elements of [1] and that is closed under [2],
[3], and [4].

“Closure” and “Closed”

Informally, a set can be defined in terms of a (usually small) starting set and a group of functions over elements from the set.
The functions are applied to members of the set, and if anything new arises, it’s added to the set. The resulting set is called
the closure over the initial set and the functions. Note that the functions(s) may only be applied a finite number of times.

Examples:

The set of natural numbers N can be defined as the closure over {0} and the successor (succ(n) = n+1) function.
Regular languages can be defined as the closure of {a} ∀ a∈Σ and ∅ and the functions of concatenation, union, and
Kleene star.

We say a set is closed over a function if applying the function to arbitrary elements in the set does not yield any new elements.

Examples:

The set of natural numbers N is closed under multiplication.
Regular languages are closed under intersection.

See Supplementary Materials—Review of Mathematical Concepts for more formal definitions of these terms.

Examples of Regular Languages
L(a*b*) =
L((a ∪ b)) =
L((a ∪ b)*) =
L((a∪ b)*a*b*) =
L = {w ∈ {a,b}* : |w| is even}
L = {w ∈ {a,b}* : w contains an odd number of a's}

Augmenting Our Notation
It would be really useful to be able to write ε in a regular expression.
 Example: (a ∪ ε) b (Optional a followed by b)

But we'd also like a minimal definition of what constitutes a regular expression. Why?

Observe that
 ∅ 0 = {ε} (since 0 occurrences of the elements of any set generates the empty string), so
 ∅ * = {ε}

So, without changing the set of languages that can be defined, we can add ε to our notation for regular expressions if we
specify that
 L(ε) = {ε}
We're essentially treating ε the same way that we treat the characters in the alphabet.
Having done this, you'll probably find that you rarely need ∅ in any regular expression.

Lecture Notes 3 Regular Languages 3

More Regular Expression Examples

L((aa*) ∪ ε) =
L((a ∪ ε)*) =
L = { w ∈ {a,b}* : there is no more than one b}
L = { w ∈ {a,b}* : no two consecutive letters are the same}

Further Notational Extensions of Regular Expressions

• A fixed number of concatenations: αn means αααα …α (n times).
• At Least 1: α+ means 1 or more occurrences of α concatenated together.
• Shorthands for denoting sets, such as ranges, e.g., (A-Z) or (letter-letter)

Example: L = (A-Z)+((A-Z)∪ (0-9))*

• A replicated regular expression αn, where n is a constant.

Example: L = (0 ∪ 1)20

• Intersection: α∩β (we’ll prove later that regular languages are closed under intersection)

Example: L = (a3)* ∩ (a5)*

Operator Precedence in Regular Expressions

Regular expressions are strings in the language of regular expressions. Thus to interpret them we need to:
1. Parse the string
2. Assign a meaning to the parse tree
Parsing regular expressions is a lot like parsing arithmetic expressions. To do it, we must assign precedence to the operators:
 Regular Arithmetic
 Expressions Expressions

 Highest Kleene star exponentiation

 concatenation

 intersection multiplication

 Lowest union addition

 a b* ∪ c d* x y2 + i j2

Regular Expressions and Grammars

Recall that grammars are language generators. A grammar is a recipe for creating strings in a language.

Regular expressions are analogous to grammars, but with two special properties:

1. The have limited power. They can be used to define only regular languages.
2. They don't look much like other kinds of grammars, which generally are composed of sets of production rules.

But we can write more "standard" grammars to define exactly the same languages that regular expressions can define.
Specifically, any such grammar must be composed of rules that:

• have a left hand side that is a single nonterminal
• have a right hand side that is ε, or a single terminal, or a single terminal followed by a single nonterminal.

Lecture Notes 3 Regular Languages 4

Regular Grammar Example
L={w ∈ {a, b}* : |w| is even}

((aa) ∪ (ab) ∪ (ba) ∪ (bb))*

 S → ε
 S → aT
 S → bT
 T → a
 T → b
 T → aS
 T → bS

Notice how these rules correspond naturally to a FSM:

 a, b

 S T

 a, b

Generators and Recognizers

 Generator Recognizer

 Language

 Regular Languages

 Regular Expressions

 Regular Grammars ?

