Nondeterministic Finite State Machines

Read K & S 2.2, 2.3

Read Supplementary Materials: Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic and Deterministic FSAs.

Do Homework 6.

Definition of a Nondeterministic Finite State Machine (NDFSM/NFA)

 $M = (K, \Sigma, \Delta, s, F)$, where

K is a finite set of states Σ is an alphabet $s \in K$ is the initial state $F \subseteq K$ is the set of final states, and Δ is the transition *relation*. It is a finite subset of $(K \times (\Sigma \cup \{\epsilon\})) \times K$ i.e., each element of Δ contains: a configuration (state, input symbol or ϵ), and a new state.

M accepts a string w if there exists some path along which w drives M to some element of F.

The language accepted by M, denoted L(M), is the set of all strings accepted by M, where computation is defined analogously to DFSMs.

A Nondeterministic FSA

L= {w : there is a symbol $a_i \in \Sigma$ not appearing in w}

The idea is to guess (nondeterministically) which character will be the one that doesn't appear.

Another Nondeterministic FSA

 $L_1 = \{w : aa occurs in w\}$ $L_2 = \{x : bb occurs in x\}$ $L_3 = \{y : \in L_1 \text{ or } L_2 \}$

 $M_3 =$

 $M_2 =$

Analyzing Nondeterministic FSAs

Does this FSA accept: baaba Remember: we just have to find one accepting path.

Nondeterministic and Deterministic FSAs

Clearly, {Languages accepted by a DFSA} \subseteq {Languages accepted by a NDFSA} (Just treat δ as Δ)

More interestingly,

Theorem: For each NDFSA, there is an equivalent DFSA. **Proof**: By construction

Another Nondeterministic Example

 $b^* \left(b(a \cup c) c \cup b(a \cup b) \left(c \cup \epsilon \right) \right)^* b$

A "Real" Example

Dealing with ϵ Transitions

 $E(q) = \{p \in K : (q,w) \mid *_M (p, w)\}$. E(q) is the closure of $\{q\}$ under the relation $\{(p,r) : \text{ there is a transition } (p, \varepsilon, r) \in \Delta\}$ An algorithm to compute E(q):

Defining the Deterministic FSA

Given a NDFSA $M = (K, \Sigma, \Delta, s, F)$, we construct $M' = (K', \Sigma, \delta', s', F')$, where $K' = 2^{K}$ s' = E(s) $F' = \{Q \subseteq K : Q \cap F \neq \emptyset\}$ $\delta'(Q, a) = \bigcup \{ E(p) : p \in K \text{ and } (q, a, p) \in \Delta \}$ for some $q \in Q$ } Example: computing δ' for the missing letter machine s' = $\{q0, q1, q2, q3\}$ δ' = $\{ (\{q0, q1, q2, q3\}, a, \{q2, q3\}), \}$ $(\{q0, q1, q2, q3\}, b, \{q1, q3\}),$ $(\{q0, q1, q2, q3\}, c, \{q1, q2\}),$ $({q1, q2}, a, {q2}), ({q1, q2}, b, {q1}), ({q1, q2}, c, {q1, q2})$ $(\{q1, q3\}, a, \{q3\}), (\{q1, q3\}, b, \{q1, q3\}), (\{q1, q3\}, c, \{q1\})$ $(\{q2, q3\}, a, \{q2, q3\}), (\{q2, q3\}, b, \{q3\}), (\{q2, q3\}, c, \{q2\})$ $({q1}, b, {q1}), ({q1}, c, {q1})$ $(\{q2\}, a, \{q2\}), (\{q2\}, c, \{q2\})$ $(\{q3\}, a, \{q3\}), (\{q3\}, b, \{q3\}) \}$

An Algorithm for Constructing the Deterministic FSA

- 1. Compute the E(q)s:
- 2. Compute s' = E(s)
- 3. Compute δ' :
- $\delta'(Q, a) = \bigcup \{ E(p) : p \in K \text{ and } (q, a, p) \in \Delta \text{ for some } q \in Q \}$
- 4. Compute K' = a subset of 2^K
- 5. Compute $F' = \{Q \in K' : Q \cap F \neq \emptyset \}$

An Example - The Or Machine

 $\begin{array}{l} L_1 = \{w : aa \ occurs \ in \ w\} \\ L_2 = \{x \ : bb \ occurs \ in \ x\} \\ L_3 = \{y \ : \in \ L_1 \ or \ L_2 \ \} \end{array}$

Another Example

 $b^* \left(b(a \cup c)c \cup b(a \cup b) \left(c \cup \epsilon \right) \right)^* b$

 $\delta^{\prime} =$

Sometimes the Number of States Grows Exponentially

Example: The missing letter machine, with $|\Sigma| = n$ No. of states after 0 chars: 1 No. of new states after 1 char: $\binom{n}{n-1} = n$ No. of new states after 2 chars: $\binom{n}{n-2} = n(n-1)/2$ No. of new states after 3 chars: $\binom{n}{n-3} = n(n-1)(n-2)/6$ Total number of states after n chars: 2^n

What If The Original FSA is Deterministic?

The real meaning of "determinism"

A FSA is deterministic if, for each input and state, there is at most one possible transition.

DFSAs are always deterministic. Why?

NFSAs can be deterministic (even with ϵ -transitions and implicit dead states), but the formalism allows nondeterminism, in general.

Determinism implies uniquely defined machine behavior.