## Nondeterministic Finite State Machines

Read K \& S 2.2, 2.3
Read Supplementary Materials: Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic and Deterministic FSAs.
Do Homework 6.

## Definition of a Nondeterministic Finite State Machine (NDFSM/NFA)

$\mathrm{M}=(\mathrm{K}, \Sigma, \Delta, \mathrm{s}, \mathrm{F})$, where
K is a finite set of states
$\Sigma$ is an alphabet
$\mathrm{s} \in \mathrm{K}$ is the initial state
$\mathrm{F} \subseteq \mathrm{K}$ is the set of final states, and
$\Delta$ is the transition relation. It is a finite subset of
$(\mathrm{K} \times(\Sigma \cup\{\varepsilon\})) \times \mathrm{K}$
i.e., each element of $\Delta$ contains:
a configuration (state, input symbol or $\varepsilon$ ), and a new state.
$M$ accepts a string $w$ if there exists some path along which $w$ drives $M$ to some element of $F$.

The language accepted by M , denoted $\mathrm{L}(\mathrm{M})$, is the set of all strings accepted by M , where computation is defined analogously to DFSMs.

## A Nondeterministic FSA

$L=\left\{w\right.$ : there is a symbol $a_{i} \in \Sigma$ not appearing in $\left.w\right\}$
The idea is to guess (nondeterministically) which character will be the one that doesn't appear.

## Another Nondeterministic FSA

$\mathrm{L}_{1}=\{\mathrm{w}$ : aa occurs in $w\}$
$\mathrm{L}_{2}=\{\mathrm{x}:$ bb occurs in x$\}$
$\mathrm{L}_{3}=\left\{\mathrm{y}: \in \mathrm{L}_{1}\right.$ or $\left.\mathrm{L}_{2}\right\}$
$\mathrm{M}_{1}=$

$\mathrm{M}_{2}=$

$\mathrm{M}_{3}=$

## Analyzing Nondeterministic FSAs



Does this FSA accept: baaba
Remember: we just have to find one accepting path.

## Nondeterministic and Deterministic FSAs

Clearly, $\{$ Languages accepted by a DFSA $\} \subseteq\{$ Languages accepted by a NDFSA $\}$ (Just treat $\delta$ as $\Delta$ )
More interestingly, Theorem: For each NDFSA, there is an equivalent DFSA.
Proof: By construction


Another Nondeterministic Example
$b^{*}(b(a \cup c) c \cup b(a \cup b)(c \cup \varepsilon))^{*} b$


## A "Real" Example



## Dealing with $\varepsilon$ Transitions

$E(q)=\left\{p \in K:(q, w) \mid-_{M}^{*}(p, w\} . E(q)\right.$ is the closure of $\{q\}$ under the relation $\quad\{(p, r)$ : there is a transition $(p, \varepsilon, r) \in \Delta\}$ An algorithm to compute $\mathrm{E}(\mathrm{q})$ :

## Defining the Deterministic FSA

Given a NDFSA $\mathrm{M}=(\mathrm{K}, \Sigma, \Delta, \mathrm{s}, \mathrm{F})$,
we construct $\quad \mathrm{M}^{\prime}=\left(\mathrm{K}^{\prime}, \Sigma, \delta^{\prime}, \mathrm{s}^{\prime}, \mathrm{F}^{\prime}\right)$, where
$\mathrm{K}^{\prime}=2^{\mathrm{K}}$
$\mathrm{s}^{\prime}=\mathrm{E}(\mathrm{s})$
$\mathrm{F}^{\prime}=\{\mathrm{Q} \subseteq \mathrm{K}: \mathrm{Q} \cap \mathrm{F} \neq \varnothing\}$
$\delta^{\prime}(\mathrm{Q}, \mathrm{a})=\cup\{\mathrm{E}(\mathrm{p}): \mathrm{p} \in \mathrm{K}$ and $(\mathrm{q}, \mathrm{a}, \mathrm{p}) \in \Delta$ for some $q \in Q\}$
Example: computing $\delta^{\prime}$ for the missing letter machine
$s^{\prime}=\{q 0, q 1, q 2, q 3\}$
$\delta^{\prime}=\{(\{q 0, q 1, q 2, q 3\}, a,\{q 2, q 3\})$,
(\{q0, q1, q2, q3\}, b, \{q1, q3\}),
(\{q0, q1, q2, q3\}, c, \{q1, q2\}),
( $\{q 1, q 2\}, a,\{q 2\}),(\{q 1, q 2\}, b,\{q 1\}),(\{q 1, q 2\}, c,\{q 1, q 2\})$
(\{q1, q3\}, a, \{q3\}), (\{q1, q3\}, b, \{q1, q3\}), (\{q1, q3\}, c, \{q1\})
(\{q2, q3\}, a, \{q2, q3\}), (\{q2, q3\}, b, \{q3\}), (\{q2, q3\}, c, \{q2\}) (\{q1\}, b, \{q1\}), (\{q1\}, c, \{q1\})
(\{q2\}, a, \{q2\}), (\{q2\}, c, \{q2\})
$(\{q 3\}, a,\{q 3\}),(\{q 3\}, b,\{q 3\})\}$


## An Algorithm for Constructing the Deterministic FSA

1. Compute the $\mathrm{E}(\mathrm{q}) \mathrm{s}$ :
2. Compute $\mathrm{s}^{\prime}=\mathrm{E}(\mathrm{s})$
3. Compute $\delta^{\prime}:$
$\delta^{\prime}(\mathrm{Q}, \mathrm{a})=\cup\{\mathrm{E}(\mathrm{p}): \mathrm{p} \in \mathrm{K}$ and $(\mathrm{q}, \mathrm{a}, \mathrm{p}) \in \Delta$ for some $\mathrm{q} \in \mathrm{Q}\}$
4. Compute $\mathrm{K}^{\prime}=$ a subset of $2^{\mathrm{K}}$
5. Compute $\mathrm{F}^{\prime}=\left\{\mathrm{Q} \in \mathrm{K}^{\prime}: Q \cap \mathrm{~F} \neq \varnothing\right\}$

## An Example - The Or Machine

$L_{1}=\{w:$ aa occurs in $w\}$
$\mathrm{L}_{2}=\{\mathrm{x}:$ bb occurs in x$\}$
$\mathrm{L}_{3}=\left\{\mathrm{y}: \in \mathrm{L}_{1}\right.$ or $\left.\mathrm{L}_{2}\right\}$


Another Example
$b^{*}(b(a \cup c) c \cup b(a \cup b)(c \cup \varepsilon))^{*} b$

$\delta^{\prime}=$

## Sometimes the Number of States Grows Exponentially

Example: The missing letter machine, with $|\Sigma|=\mathrm{n}$ No. of states after 0 chars: 1
No. of new states after 1 char: $\binom{n}{n-1}=\mathrm{n}$
No. of new states after 2 chars: $\binom{n}{n-2}=n(n-1) / 2$
No. of new states after 3 chars: $\binom{n}{n-3}=n(n-1)(n-2) / 6$
Total number of states after $n$ chars: $2^{n}$


## What If The Original FSA is Deterministic?



1. Compute the $\mathrm{E}(\mathrm{q}) \mathrm{s}$ :
2. $\mathrm{s}^{\prime}=\mathrm{E}(\mathrm{q} 0)=$
3. Compute $\delta^{\prime}$
(\{q0\}, odd, $\{q 1\}$ )
( $\{q 0\}$, even, $\{q 0\}$ )
(\{q1\}, odd, \{q1\})
(\{q1\}, even, $\{q 0\}$ )
4. $K^{\prime}=\{\{q 0\},\{q 1\}\}$
5. $\mathrm{F}^{\prime}=\{\{\mathrm{q} 1\}\}$

$$
\mathrm{M}^{\prime}=\mathrm{M}
$$

The real meaning of "determinism"
A FSA is deterministic if, for each input and state, there is at most one possible transition.
DFSAs are always deterministic. Why?

NFSAs can be deterministic (even with $\varepsilon$-transitions and implicit dead states), but the formalism allows nondeterminism, in general.

Determinism implies uniquely defined machine behavior.

