
Lecture Notes 6                                          Interpreters for Finite State Machines   1 

Interpreters for Finite State Machines 
 
 

Deterministic FSAs as Algorithms 
 
Example:  No more than one b 
 
 
          a                                   a           a,b 
                                 b   b 
               S                                  T      U 
 
 
Length of Program:  |K| × (|Σ| + 2) 
Time required to analyze string w:  O(|w| × |Σ|) 
 
We have to write new code for every new FSM. 
 
Until accept or reject do: 

S: s := get-next-symbol; 
 if s = end-of-file then accept; 
 else if s = a then go to S; 
 else if s = b then go to T; 
T:  s:= get-next-symbol; 
 if s = end-of-file then accept; 
 else if s = a then go to T; 
 else if s = b then go to U; 
etc. 
 
 

 
 

A Deterministic FSA Interpreter 
 
To simulate M = (K, Σ, δ, s, F): 
 

ST := s; 
Repeat 

  i := get-next-symbol; 
  if i ≠ end-of-string then 
   ST := δ(ST, i) 

Until i = end-of-string; 
If ST ∈  F then accept else reject 

 

Simulate the no more than one b machine on input: aabaa 
 
 
 
 
 
 
 
 
 

Nondeterministic FSAs as Algorithms 
 
Real computers are deterministic, so we have three choices if we want to execute a nondeterministic FSA: 
 
1. Convert the NDFSA to a deterministic one: 

• Conversion can take time and space 2K. 
• Time to analyze string w:  O(|w|) 
 

2. Simulate the behavior of the nondeterministic one by constructing sets of states "on the fly" during execution 
• No conversion cost 
• Time to analyze string w: O(|w| × K2) 

 
3. Do a depth-first search of all paths through the nondeterministic machine. 
 



Lecture Notes 6                                          Interpreters for Finite State Machines   2 

A Nondeterministic FSA Interpreter 
 
To simulate M = (K, Σ, ∆, s, F): 
 
SET ST; 
ST := E(s); 
Repeat 
 i := get-next-symbol; 
 if  i ≠ end-of-string then 
  ST1 := ∅  

For all q ∈  ST do 
For all r ∈  ∆(q, i) do 

    ST1 := ST1 ∪  E(r); 
  ST := ST1; 
 
Until i = end-of-string; 
If  ST ∩  F ≠ ∅  then accept else reject 
 
 

A Deterministic Finite State Transducer Interpreter 
 
To simulate M = (K, Σ, O, δ, s, F), given that: 

 δ1(state, symbol)  returns a single new state  
(i.e., M is deterministic), and 

δ2(state, symbol) returns an element of O*, the  
string to be output. 

 
ST := s; 
Repeat: 
 i := get-next-symbol; 
 if  i ≠ end-of-string then 
    write(δ2(ST, i)); 
    ST := δ1(ST, i)  
Until i = end-of-string; 
If  ST ∈  F then accept else reject 

 


