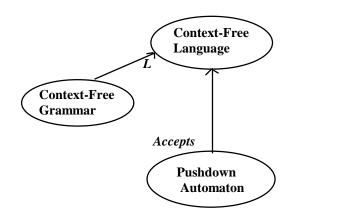
Context-Free Grammars

Read K & S 3.1

Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Grammars Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars. Do Homework 11.

Context-Free Grammars, Languages, and Pushdown Automata



Grammars Define Languages

Think of grammars as either generators or acceptors.

Example: $L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$

	Regular Expression	Regular Grammar
	$(aa \cup ab \cup ba \cup bb)^*$	$S \rightarrow \varepsilon$ $S \rightarrow aT$ $S \rightarrow bT$ $T \rightarrow a$ $T \rightarrow b$ $T \rightarrow aS$
		$T \rightarrow bS$
Derivation (Generate)	choose aa choose ab yields	
Parse (Accept)	a a a b use corresponding	a a a b g FSM

Derivation is Not Necessarily Unique

Example: $L = \{w \in \{a, b\}^* : \text{there is at least one } a\}$

Regular Expression	Regular Gramn	nar
$(a \cup b)^*a (a \cup b)^*$	$S \rightarrow a$	
	$S \rightarrow bS$	
choose a from $(a \cup b)$	$S \rightarrow aS$	
choose a from $(a \cup b)$	$S \rightarrow aT$	
choose a	$T \rightarrow a$	
	$T \rightarrow b$	
choose a	$T \rightarrow aT$	•
choose a from (a \cup b)	$T \rightarrow bT$	•
choose a from $(a \cup b)$		
	Ş	S

a Sa T a Sa T a Sa T

More Powerful Grammars

Regular grammars must always produce strings one character at a time, moving left to right.

But sometimes it's more natural to describe generation more flexibly.

Example 1: L = ab*a

$S \rightarrow aBa$		$S \rightarrow aB$
$B \to \epsilon$	VS.	$B \rightarrow a$
$B \rightarrow bB$		$B \rightarrow bB$

Example 2: $L = a^n b^* a^n$

$S \rightarrow B$
$S \rightarrow aSa$
$B \to \epsilon$
$B \rightarrow bB$

Key distinction: Example 1 has no recursion on the nonregular rule.

Context-Free Grammars

Remove all restrictions on the form of the right hand sides.

$$S \rightarrow abDeFGab$$

Keep requirement for single non-terminal on left hand side.

 $S \rightarrow$

but not $ASB \rightarrow \text{ or } aSb \rightarrow \text{ or } ab \rightarrow$

Examples:	balanced parentheses	a ⁿ b ⁿ
	$S \rightarrow \epsilon$	$S \rightarrow a \ S \ b$
	$S \rightarrow SS$	$S \rightarrow \epsilon$
	$S \rightarrow (S)$	

Context-Free Grammars

A context-free grammar G is a quadruple (V, Σ , R, S), where:

- V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in strings in the language) and terminals,
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V \Sigma) \times V^*$,
- S (the start symbol) is an element of V Σ .

 $x \Rightarrow_G y$ is a binary relation where x, $y \in V^*$ such that $x = \alpha A\beta$ and $y = \alpha \chi\beta$ for some rule $A \rightarrow \chi$ in R.

Any sequence of the form

 $w_0 \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \ldots \Rightarrow_G w_n$

e.g., $(S) \Rightarrow (SS) \Rightarrow ((S)S)$

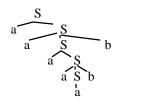
is called a derivation in G. Each w_i is called a sentinel form.

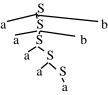
The language generated by G is $\{w \in \Sigma^* : S \Rightarrow_G^* w\}$

A language L is context free if L = L(G) for some context-free grammar G.

Example Derivations

$$\begin{split} G &= (W, \Sigma, R, S), \text{ where } \\ & W &= \{S\} \cup \Sigma, \\ & \Sigma &= \{a, b\}, \\ & R &= & \{S \rightarrow a, \\ & S \rightarrow aS, \\ & S \rightarrow aSb \end{split}$$





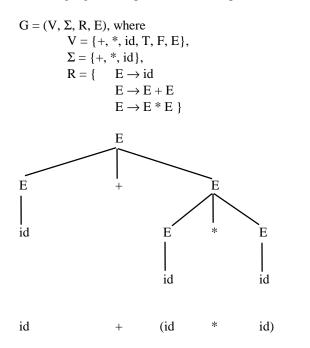
Another Example - Unequal a's and b's

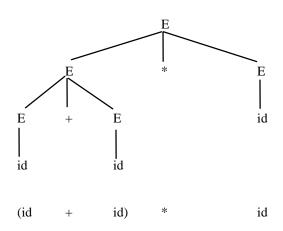
$\mathbf{L} = \{\mathbf{a}^{n}\mathbf{b}^{m} : \mathbf{n} \neq \mathbf{m}\}$	$S \rightarrow A$	/* more a's than b's
	$S \rightarrow B$	/* more b's than a's
$G = (W, \Sigma, R, S)$, where	$A \rightarrow a$	
$W = \{a, b, S, A, B\},\$	$A \rightarrow aA$	
$\Sigma = \{a, b\},\$	$A \rightarrow aAb$	
R =	$B \rightarrow b$	
	$B \rightarrow Bb$	
	$B \rightarrow aBb$	

English	
$S \rightarrow NP VP$	the boys run
NP \rightarrow the NP1 NP1	big boys run
NP1 \rightarrow ADJ NP1 N	the youngest boy runs
$ADJ \rightarrow big \mid youngest \mid oldest$ $N \rightarrow boy \mid boys$ $VP \rightarrow V \mid V$ NP	the youngest oldest boy runs the boy run
$V \rightarrow run \mid runs$	Who did you say Bill saw coming out of the hotel?

Arithmetic Expressions

The Language of Simple Arithmetic Expressions





Arithmetic Expressions -- A Better Way

The Language of Simple Arithmetic Expressions

$G = (V, \Sigma, R, E)$, where	Examples:
$V = \{+, *, (,), id, T, F, E\},\$ $\Sigma = \{+, *, (,), id\},\$	id + id * id
$R = \{ E \rightarrow E + T \\ E \rightarrow T $	
$\begin{array}{c} T \to T \\ T \to T & F \\ T \to F \end{array}$	id * id * id
$\begin{array}{l} F \rightarrow (E) \\ F \rightarrow id \end{array} \}$	

BNF

Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars.

Main idea: give descriptive names to nonterminals and put them in angle brackets.

```
Example: arithmetic expressions:
```

 $\begin{array}{l} \langle expression \rangle \rightarrow \langle expression \rangle + \langle term \rangle \\ \langle expression \rangle \rightarrow \langle term \rangle \\ \langle term \rangle \rightarrow \langle term \rangle * \langle factor \rangle \\ \langle term \rangle \rightarrow \langle factor \rangle \\ \langle factor \rangle \rightarrow (\langle expression \rangle) \\ \langle factor \rangle \rightarrow \langle id \rangle \end{array}$

The Language of Boolean Logic

$G = (V, \Sigma, R, E)$, where

```
V = \{\land, \lor, \neg, \Rightarrow, (, ), \text{ id}, E, E1, E2, E3, E4 \},

\Sigma = \{\land, \lor, \neg, \Rightarrow, (, ), \text{ id}\},

R = \{ E \rightarrow E \Rightarrow E1 

E \rightarrow E1 

E1 \rightarrow E1 \lor E2 

E2 \rightarrow E2 \land E3 

E3 \rightarrow \neg E4 

E3 \rightarrow E4 

E4 \rightarrow (E) 

E4 \rightarrow \text{ id} \}
```

Boolean Logic isn't Regular

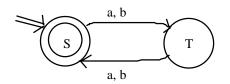
Suppose it were regular. Then there is an N as specified in the pumping theorem.

Let w be a string of length 2N + 1 + 2|id| of the form: $w = (((((((id))))))) \Rightarrow id)$ $X \quad y$ $y = (^{k} \text{ for some } k > 0 \text{ because } |xy| \le N.$

Then the string that is identical to w except that it has k additional ('s at the beginning would also be in the language. But it can't be because the parentheses would be mismatched. So the language is not regular.

All Regular Languages Are Context Free

(1) Every regular language can be described by a regular grammar. We know this because we can derive a regular grammar from any FSM (as well as vice versa). Regular grammars are special cases of context-free grammars.



(2) The context-free languages are precisely the languages accepted by NDPDAs. But every FSM is a PDA that doesn't bother with the stack. So every regular language can be accepted by a NDPDA and is thus context-free.

(3) Context-free languages are closed under union, concatenation, and Kleene *, and ε and each single character in Σ are clearly context free.