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Context-Free Grammars 
 
Read K & S 3.1 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Grammars 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars. 
Do Homework 11. 
 

Context-Free Grammars, Languages, and Pushdown Automata 
 
 
                                             Context-Free 
                                             Language 
                                    L  
                                 
     Context-Free 
     Grammar 
 
                                       Accepts 
 
                                              Pushdown 
                                               Automaton 
 
 

Grammars Define Languages 
 
Think of grammars as either generators or acceptors. 
 
Example:  L = {w ∈  {a, b}* : |w| is even} 
 

Regular Expression 
 
   (aa ∪  ab ∪  ba ∪  bb)* 

Regular Grammar 
 S → ε 
 S → aT 
 S → bT 
 T → a 
 T → b 

  T → aS 
  T → bS 

 
Derivation 
  (Generate) 
 
 
 

choose aa 
choose ab 
  yields  
 
 
 a  a  a   b 

     S 
a         T 
        a     S 
             a   T 
                  b 
a      a   a   b 

Parse  (Accept)     use corresponding FSM 
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Derivation is Not Necessarily Unique 
 

Example:  L = {w ∈  {a, b}* : there is at least one a} 
 
Regular Expression 
 
(a ∪  b)*a (a ∪  b)* 
 
choose a from (a  ∪  b) 
choose a from (a  ∪  b) 
choose a 
 
choose a 
choose a from (a  ∪  b) 
choose a from (a  ∪  b)  
 

Regular Grammar 
 
 S → a 
 S → bS 
 S → aS 
 S → aT 
 T → a 
 T → b 
 T → aT 
 T → bT 
 
       S                   S 
    a     S           a     T 
        a    S             a    T 
              a                   a 
 

More Powerful Grammars 
 
Regular  grammars must always produce strings one character at a time, moving left to right. 
 
But sometimes it's more natural to describe generation more flexibly. 
 
Example 1:  L = ab*a 
 

S → aBa 
B → ε 
B → bB 

 
vs. 
 

S → aB 
B → a 
B → bB 

 
Example 2:  L = anb*an 
 

S → B 
S → aSa 
B → ε 
B → bB 

 
Key distinction: Example 1 has no recursion on the nonregular rule. 
 

Context-Free Grammars 
 
Remove all restrictions on the form of the right hand sides. 
 
  S → abDeFGab 
 
Keep requirement for single non-terminal on left hand side. 
 
  S → 
 
 but not  ASB →   or   aSb →    or   ab → 
 
Examples: balanced parentheses   anbn 

 S → ε    S → a S b 
 S → SS    S → ε  
 S → (S) 
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Context-Free Grammars 
 
A context-free grammar G is a quadruple (V, Σ, R, S), where: 
• V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in strings in 

the language) and terminals, 
• Σ (the set of terminals) is a subset of V, 
• R (the set of rules) is a finite subset of (V - Σ) × V*,  
• S (the start symbol) is an element of V - Σ. 
 
x ����G y is a binary relation where x, y ∈  V* such that x = αAβ and y = αχβ  for some rule A→χ in R. 
 
Any sequence of the form 

w0 �G w1 �G w2 �G . . . �G wn 

e.g., (S) � (SS) � ((S)S) 
is called a derivation in G.  Each wi is called a sentinel form. 
 
The language generated by G is   {w ∈  Σ* : S �G* w} 

 
A language L is context free if L = L(G) for some context-free grammar G. 
 

Example Derivations 
 
G = (W, Σ, R, S), where 
 W = {S} ∪  Σ, 
 Σ = {a, b}, 
 R =      { S → a, 
  S → aS, 
  S → aSb} 
 
 
           S                       S 
    a             S                                  a         S                 b 
        a         S           b                                 a     S           b 
               a      S                                            a     S 
                   a  S  b                                             a     S 
                       a                                             a 
 

 
Another Example - Unequal a's and b's 

 
L = {anbm : n ≠ m} 
 
G = (W, Σ, R, S), where 
 W = {a, b, S, A, B}, 
 Σ = {a, b}, 
 R =  
 

S → A   /* more a's than b's 
S → B   /* more b's than a's 
A → a 
A → aA   
A → aAb 
B → b 
B → Bb 
B → aBb 
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English 
  S  → NP  VP 
  NP  → the NP1 | NP1 
  NP1  → ADJ  NP1 | N 
  ADJ → big | youngest | oldest 
  N → boy | boys 
  VP →V | V  NP 
  V → run | runs 

the boys run 
big boys run 
the youngest boy runs 
 
the youngest oldest boy runs 
the boy run 
 
Who did you say Bill saw coming out of the hotel?

 
 

Arithmetic Expressions 
 

The Language of Simple Arithmetic Expressions 
 
G = (V, Σ, R, E), where 
 V = {+, *, id, T, F, E}, 
 Σ = {+, *, id}, 
 R = {  E → id 
  E → E + E 
  E → E * E } 
  
  E         E 
 
 
E  +  E     E  *  E 
 
 
id   E  * E   E +  E   id 
 
 
   id  id   id  id 
 
 
id  +           (id * id)   (id + id) *  id 
 
 

Arithmetic Expressions -- A Better Way 
 
The Language of Simple Arithmetic Expressions 
 
G = (V, Σ, R, E), where 
 V = {+, *, (, ), id, T, F, E}, 
 Σ = {+, *, (, ), id}, 
 R = {  E → E + T 

E→ T 
T → T * F 

  T → F 
F → (E) 

  F → id  }

 
 
Examples: 
 

id + id * id 
 
 
 
id * id * id 
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BNF 
 
Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars. 
 
Main idea: give descriptive names to nonterminals and put them in angle brackets. 
 

Example: arithmetic expressions: 
�expression� → �expression� + �term� 
�expression� → �term� 

 �term� → �term� * �factor� 
  �term� → �factor� 

�factor� → (�expression�) 
  �factor� → �id�    
   

 
The Language of Boolean Logic 

G = (V, Σ, R, E), where 
 V = {∧ , ∨ , ¬ ,� , (, ), id, E,  E1, E2, E3, E4  }, 
 Σ = {∧ , ∨ , ¬ , �, (, ), id}, 
 R = {  E → E � E1 
   E → E1 
  E1 → E1 ∨  E2 
  E1 →E2 
  E2 → E2 ∧  E3 
  E2 → E3 
  E3 → ¬  E4 
  E3 → E4 
  E4 →(E) 
  E4 → id   } 
 
 

Boolean Logic isn't Regular 
 
Suppose it were regular.  Then there is an N as specified in the pumping theorem. 

Let w be a string of length 2N + 1 + 2|id| of the form: 
w =     ( ( ( ( ( ( id ) ) ) ) ) ) � id 
                  N 
               x   y 

y = (k for some k > 0 because |xy| ≤ N. 
 
Then the string that is identical to w except that it has k additional ('s at the beginning would also be in the language.  But it can't 
be because the parentheses would be mismatched.  So the language is not regular. 
 



Lecture Notes 12                                 Context-Free Grammars             6 

All Regular Languages Are Context Free 
 
(1) Every regular language can be described by a regular grammar.  We know this because we can derive a regular grammar from 
any FSM (as well as vice versa).  Regular grammars are special cases of context-free grammars. 
 
                              a, b 
                
                 S                                  T 
 
                              a, b 
 
(2) The context-free languages are precisely the languages accepted by NDPDAs.  But every FSM is a PDA that doesn't bother 
with the stack.  So every regular language can be accepted by a NDPDA and is thus context-free. 
 
(3) Context-free languages are closed under union, concatenation, and Kleene *, and ε and each single character in Σ are clearly 
context free. 


