Pushdown Automata

Read K & S 3.3.

Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Pushdown Automata. Do Homework 13.

Recognizing Context-Free Languages

Two notions of recognition:

(1) Say yes or no, just like with FSMs(2) Say yes or no, AND

Just Recognizing

We need a device similar to an FSM except that it needs more power.

The insight: Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

 $(s, w, \varepsilon) \mid_{-M}^{*} (p, \varepsilon, \varepsilon)$ for some state $p \in F$

 $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where:

$$K = \{s\}$$
the states $\Sigma = \{[,]\}$ the input alphabet $\Gamma = \{[\}$ the stack alphabet $F = \{s\}$ Δ contains:

$$((s, [, \epsilon), (s, [))) \\ ((s,], [), (s, \epsilon))$$

Important:

This does not mean that the stack is empty.

An Example of Accepting

Δ contains:

[1]	((s, [, ɛ), (s, [))
[2]	((s,], [), (s, ε))
input =	[[[]]]]

trans	state	unread input	stack
	S	[[[]]]]	ε
1	S	[[][]]]	[
1	S	[][]]]	[[
1	S][]]]	[[[
2	S	[]]]	[[
1	S]]]	[[[
2	S]]	[[
2	S]	[
2	S	ε	ε

An Example of Rejecting

[1]	((s, [, ɛ), (s, [))
[2]	$((s,], [), (s, \varepsilon))$
input =	[[]]]

trans	state	unread input	stack
	S	[[]]]	3
1	S	[]]]	[
1	S]]]	[[
2	S]]	[
2	S]	3
none!	S]	3

We're in s, a final state, but we cannot accept because the input string is not empty. So we reject.

First we notice:

- We'll use the stack to count the a's.
- This time, all strings in L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the regular language a*b*.

A PDA for wcw^R

 $S \rightarrow \epsilon$ $S \rightarrow aSa$ $S \rightarrow bSb$ A PDA to accept strings of the form ww^R: a/a/ a//a ε// s b//b b/b/ $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where: $K = \{s, f\}$ the states $\Sigma = \{a, b, c\}$ the input alphabet $\Gamma = \{a, b\}$ the stack alphabet $F = {f}$ the final states Δ contains: $((s, a, \epsilon), (s, a))$ $((s, b, \varepsilon), (s, b))$ $((s, \varepsilon, \varepsilon), (f, \varepsilon))$ $((f, a, a), (f, \varepsilon))$ $((f, b, b), (f, \epsilon))$ An Example of Accepting a/a/ a//a ε// S b//b b/b/ [1] $((s, a, \epsilon), (s, a))$ [4] $((s, b, \epsilon), (s, b))$ [5] [2] $((s, \varepsilon, \varepsilon), (f, \varepsilon))$ [3] input: a a b b a a unread input stack trans state aabbaa s ε a b b a a 1 s а 3 f abbaa a 4 f bbaa ε none trans unread input stack state aabbaa s ε 1 a b b a a а \mathbf{S} 1 bbaa s aa 2 baa baa S 3 f baa baa 5 f a a aa 4 f а а 4 f ε ε

 $L = ww^R$

 $((f, a, a), (f, \varepsilon))$

 $((f, b, b), (f, \epsilon))$

A context-free grammar for L:

 $\begin{array}{l} S \rightarrow \epsilon \\ S \rightarrow Sb \\ S \rightarrow aSb \end{array} \qquad \qquad /* \mbox{ more b's } \end{array}$

A PDA to accept L:

Accepting Mismatches

 $L = \{a^{m}b^{n} \ m \neq n; \ m, \ n > 0\}$

- If stack and input are empty, halt and reject.
- If input is empty but stack is not (m > n) (accept):

• If stack is empty but input is not (m < n) (accept):

Eliminating Nondeterminism

A PDA is **deterministic** if, for each input and state, there is at most one possible transition. Determinism implies uniquely defined machine behavior.

Jumping to the input clearing state 4: Need to detect bottom of stack, so push Z onto the stack before we start.

• Jumping to the stack clearing state 3:

Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character (e.g., \$)

$\mathbf{L} = \{\mathbf{a}^{n}\mathbf{b}^{m}\mathbf{c}^{p}: n,m,p \ge 0 \text{ and } (n \neq m \text{ or } m \neq p)\}$

$S \rightarrow NC$	$/* n \neq m$, then arbitrary c's	$C \rightarrow \epsilon \mid cC$	/* add any number of c's
$S \rightarrow QP$	/* arbitrary a's, then $p \neq m$	$P \rightarrow B'$	/* more b's than c's
$N \rightarrow A$	/* more a's than b's	$P \rightarrow C'$	/* more c's than b's
$N \rightarrow B$	/* more b's than a's	$B' \rightarrow b$	
$A \rightarrow a$		$B' \rightarrow bB'$	
$A \rightarrow aA$		$B' \rightarrow bB'c$	
$A \rightarrow aAb$		$C' \rightarrow c \mid C'c$	
$B \rightarrow b$		$C' \rightarrow C'c$	
$B \rightarrow Bb$		$C' \rightarrow bC'c$	
$B \rightarrow aBb$		$Q \rightarrow \epsilon \mid aQ$	/* prefix with any number of a's

$\mathbf{L} = \{\mathbf{a}^{n}\mathbf{b}^{m}\mathbf{c}^{p}: n,m,p \ge 0 \text{ and } (n \neq m \text{ or } m \neq p)\}$

 $L = \{a^n b^n\} \cup \{b^n a^n\}$

A CFG for L:

A NDPDA for L:

 $\begin{array}{l} S \rightarrow A \\ S \rightarrow B \\ A \rightarrow \epsilon \\ A \rightarrow aAb \\ B \rightarrow \epsilon \end{array}$

 $B \rightarrow bBa$

A DPDA for L:

More on PDAs

What about a PDA to accept strings of the form ww?

Every FSM is (Trivially) a PDA

Given	an FSM	$\mathbf{M} = (\mathbf{K},$, Σ , Δ , s, F)					
	and el	ements o	of Δ of the form					
		(p, old state,	i, input,	q new state)		
We co	nstruct a	PDA M	$I' = (K, \Sigma, \Gamma, \Delta, s, I)$	F)				
	where	$\Gamma = \emptyset$	/* sta	ck alphabet				
		and		-				
	each t	ransitior	n (p, i, q) becor	nes				
((p,	i,	ε),	(q,	ε))
old	state,	input,	don't look at st	ack		new state	don't push on s	tack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA

Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)

We can easily convert from one of our machines to one of these:

1. Add a new state at the beginning that pushes # onto the stack.

2. Add a new final state and a transition to it that can be taken if the input string is empty and the top of the stack is #. Converting the balanced parentheses machine:

What About PDA's for Interesting Languages?

But what we really want to do with languages like this is to extract structure.

Comparing Regular and Context-Free Languages

Regular Languages

•	regular expressions	
	- or -	

- regular grammars
- recognize
- = DFSAs

- Context-Free Languages
- context-free grammars
- parse
- = NDPDAs