Pushdown Automata

Read K \& S 3.3.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Pushdown Automata. Do Homework 13.

Recognizing Context-Free Languages

Two notions of recognition:
(1) Say yes or no, just like with FSMs
(2) Say yes or no, AND if yes, describe the structure

Just Recognizing

We need a device similar to an FSM except that it needs more power.
The insight: Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

Definition of a Pushdown Automaton

$\mathrm{M}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{F})$, where:
K is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
$s \in K$ is the initial state
$\mathrm{F} \subseteq \mathrm{K}$ is the set of final states, and
Δ is the transition relation. It is a finite subset of
$\left(\begin{array}{llllllll} \\ \mathrm{K} & \times(\Sigma \cup\{\varepsilon\}) \times & \Gamma^{*}\end{array}\right)$

M accepts a string wiff

$$
(\mathrm{s}, \mathrm{w}, \varepsilon) \mid-\mathrm{m}^{*}(\mathrm{p}, \varepsilon, \varepsilon) \quad \text { for some state } \mathrm{p} \in \mathrm{~F}
$$

A PDA for Balanced Brackets

$\mathrm{M}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{F})$, where: $\mathrm{K}=\{\mathrm{s}\}$
$\Sigma=\{[]$,
$\Gamma=\{[\}$
$\mathrm{F}=\{\mathrm{s}\}$
Δ contains:

Important:
This does not mean that the stack is empty.
An Example of Accepting

Δ contains:

An Example of Rejecting

Δ contains:

[1]
((s, [, $\varepsilon),(\mathrm{s},[))$
[2]
((s,], [), (s, ع))
input $=$ [[]]]

trans	state	unread input	stack
	s	$[[]]]$	ε
1	s	[]$]]$	$[$
1	s	$]]]$	$[[$
2	s	$]]$	$[$
2	s	$]$	ε
none!	s	$]$	ε

We're in s, a final state, but we cannot accept because the input string is not empty. So we reject.

First we notice:

- We'll use the stack to count the a's.
- This time, all strings in L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the regular language $\mathrm{a}^{*} \mathrm{~b}^{*}$.

A PDA for wcw ${ }^{\text {R }}$

A PDA to accept strings of the form wcw ${ }^{R}$:

$\mathrm{M}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{F})$, where:
$K=\{s, f\}$
the states
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\Gamma=\{a, b\}$
the input alphabet
the stack alphabet
the final states
Δ contains
$((\mathrm{s}, \mathrm{a}, \varepsilon),(\mathrm{s}, \mathrm{a}))$
((s, b, e), (s, b))
((s, c, $\varepsilon),(f, \varepsilon))$
((f, a, a), (f, ع))
((f, b, b), (f, ع))

An Example of Accepting

Δ contains:
[1] ((s, a, $\varepsilon),(\mathrm{s}, \mathrm{a}))$
[2] $\quad((s, b, \varepsilon),(s, b))$
[3] ((s, c, \&), (f, \&))
[4] ((f, a, a), (f, ع))
[5] $\quad((f, b, b),(f, \varepsilon))$
input $=\mathrm{bacab}$

trans	state	unread input	stack
	s	b a c a	

A Nondeterministic PDA

$L=w w^{R}$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \varepsilon \\
& \mathrm{~S} \rightarrow \mathrm{aSa} \\
& \mathrm{~S} \rightarrow \mathrm{bSb}
\end{aligned}
$$

A PDA to accept strings of the form $w w^{R}$:

$\mathrm{M}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{F})$, where:
$\mathrm{K}=\{\mathrm{s}, \mathrm{f}\} \quad$ the states
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \quad$ the input alphabet
$\Gamma=\{\mathrm{a}, \mathrm{b}\} \quad$ the stack alphabet
F $=\{\mathrm{f}\}$
Δ contains:
$((\mathrm{s}, \mathrm{a}, \varepsilon),(\mathrm{s}, \mathrm{a}))$
$((\mathrm{s}, \mathrm{b}, \varepsilon),(\mathrm{s}, \mathrm{b}))$
$((\mathrm{s}, \varepsilon, \varepsilon),(\mathrm{f}, \varepsilon))$
$((\mathrm{f}, \mathrm{a}, \mathrm{a}),(\mathrm{f}, \varepsilon))$
$((\mathrm{f}, \mathrm{b}, \mathrm{b}),(\mathrm{f}, \varepsilon))$

An Example of Accepting

[1]
[2]

trans	state	unread input	stack
	s	a a b b a a	ε
1	S	a b b a a	a
3	f	a b b a a	a
4	f	b b a a	ε

$$
\begin{aligned}
& ((\mathrm{s}, \mathrm{a}, \varepsilon),(\mathrm{s}, \mathrm{a})) \\
& ((\mathrm{s}, \mathrm{~b}, \varepsilon),(\mathrm{s}, \mathrm{~b})) \\
& ((\mathrm{s}, \varepsilon, \varepsilon),(\mathrm{f}, \varepsilon)) \\
& \text { input: } \quad \text { a a b b a a }
\end{aligned}
$$

| trans | state | unread input |
| :--- | :---: | :---: | :--- |
| | s | a a b b a a |

$$
L=\left\{a^{m} b^{n}: m \leq n\right\}
$$

A context-free grammar for L :

$$
\begin{array}{ll}
S \rightarrow \varepsilon & \\
S \rightarrow S b & / * \text { more b's } \\
S \rightarrow \mathrm{aSb} &
\end{array}
$$

A PDA to accept L:

Accepting Mismatches

$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mathrm{m} \neq \mathrm{n} ; \mathrm{m}, \mathrm{n}>0\right\}$

- If stack and input are empty, halt and reject.
- If input is empty but stack is not $(\mathrm{m}>\mathrm{n})($ accept $)$:

- If stack is empty but input is not $(\mathrm{m}<\mathrm{n})$ (accept):

Eliminating Nondeterminism

A PDA is deterministic if, for each input and state, there is at most one possible transition. Determinism implies uniquely defined machine behavior.

Need to detect bottom of stack, so push Z onto the stack before we start.

Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character (e.g., \$)

$$
L=\left\{a^{n} b^{m} c^{p}: n, m, p \geq 0 \text { and }(n \neq m \text { or } m \neq p)\right\}
$$

$\mathrm{S} \rightarrow \mathrm{NC}$	$/ * \mathrm{n} \neq \mathrm{m}$, then arbitrary c's	$\mathrm{C} \rightarrow \varepsilon \mid \mathrm{cC}$	$/ *$ add any number of c's
$\mathrm{S} \rightarrow \mathrm{QP}$	/* arbitrary a's, then $\mathrm{p} \neq \mathrm{m}$	$\mathrm{P} \rightarrow \mathrm{B}^{\prime}$	$/ *$ more b's than c's
$\mathrm{N} \rightarrow \mathrm{A}$	/* more a's than b's	$\mathrm{P} \rightarrow \mathrm{C}^{\prime}$	$/ *$ more c's than $\mathrm{b}^{\prime} \mathrm{s}$
$\mathrm{N} \rightarrow \mathrm{B}$	/* more b's than a's	$\mathrm{B}^{\prime} \rightarrow \mathrm{b}$	
$\mathrm{A} \rightarrow \mathrm{a}$	$\mathrm{B}^{\prime} \rightarrow \mathrm{bB}$		
$\mathrm{A} \rightarrow \mathrm{aA}$	$\mathrm{B}^{\prime} \rightarrow \mathrm{bB} \mathrm{B}^{\prime} \mathrm{c}$		
$\mathrm{A} \rightarrow \mathrm{aAb}$	$\mathrm{C}^{\prime} \rightarrow \mathrm{c} \mid \mathrm{C}^{\prime} \mathrm{c}$		
$\mathrm{B} \rightarrow \mathrm{b}$	$\mathrm{C}^{\prime} \rightarrow \mathrm{C}^{\prime} \mathrm{c}$		
$\mathrm{B} \rightarrow \mathrm{Bb}$	$\mathrm{C}^{\prime} \rightarrow \mathrm{bC} \mathrm{C}^{\prime} \mathrm{c}$		
$\mathrm{B} \rightarrow \mathrm{aBb}$	$\mathrm{Q} \rightarrow \varepsilon \mid \mathrm{aQ}$	$/ *$ prefix with any number of a's	

$$
L=\left\{\mathbf{a}^{n} b^{m} c^{p}: \mathbf{n}, \mathbf{m}, \mathbf{p} \geq 0 \text { and }(\mathbf{n} \neq \mathbf{m} \text { or } \mathbf{m} \neq \mathbf{p})\right\}
$$

Another Deterministic CFL

$L=\left\{a^{n} b^{n}\right\} \cup\left\{b^{n} a^{n}\right\}$

A CFG for L :
A NDPDA for L :
$S \rightarrow A$
$S \rightarrow B$
$\mathrm{A} \rightarrow \varepsilon$
$\mathrm{A} \rightarrow \mathrm{aAb}$
$\mathrm{B} \rightarrow \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bBa}$

A DPDA for L :

More on PDAs

What about a PDA to accept strings of the form ww?

Every FSM is (Trivially) a PDA

Given an $\mathrm{FSM} \mathrm{M}=(\mathrm{K}, \Sigma, \Delta, \mathrm{s}, \mathrm{F})$ and elements of Δ of the form
$\left.\begin{array}{ccc}\text { p, } & \text { i, } & \mathrm{q} \\ \text { old state, } & \text { input, } & \text { new state }\end{array}\right)$

We construct a PDA $\mathrm{M}^{\prime}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{F})$
where $\Gamma=\varnothing \quad / *$ stack alphabet
and
each transition (p, i, q) becomes
$\left.\begin{array}{ccccc}\left(\begin{array}{cc}\mathrm{p}, & \mathrm{i},\end{array}\right. & \varepsilon & \text { (} \\ \text { old state, } & \text { input, } & \text { don't look at stack }\end{array}\right), \quad\left(\begin{array}{cc}\mathrm{q}, & \varepsilon \\ \text { new state } & \text { don't push on stack }\end{array}\right)$

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA

Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)
We can easily convert from one of our machines to one of these:

1. Add a new state at the beginning that pushes \# onto the stack.
2. Add a new final state and a transition to it that can be taken if the input string is empty and the top of the stack is \#. Converting the balanced parentheses machine:

What About PDA's for Interesting Languages?

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
$\mathrm{~T} \rightarrow \mathrm{~F}$
$\mathrm{~F} \rightarrow(\mathrm{E})$
$\mathrm{F} \rightarrow \mathrm{id}$

Arithmetic Expressions

(1) $(2, \varepsilon, E),(2, E+T)$
(2) $(2, \varepsilon, E),(2, T)$
(3) $(2, \varepsilon, T),(2, T * F)$
(4) $(2, \varepsilon, T),(2, F)$
(5) $(2, \varepsilon, F),(2,(\mathrm{E}))$
(6) $(2, \varepsilon, F),(2$, id)
(7) $(2, \mathrm{id}, \mathrm{id}),(2, \varepsilon)$
(8) $(2,(,(),(2, \varepsilon)$
(9) $(2),),),(2, \varepsilon)$
(10) $(2,+,+),(2, \varepsilon)$
(11) $(2, *, *),(2, \varepsilon)$

But what we really want to do with languages like this is to extract structure.

Comparing Regular and Context-Free Languages

Regular Languages

- regular expressions
- or -
- regular grammars
- recognize
- = DFSAs

Context-Free Languages

- context-free grammars
- parse
- = NDPDAs

