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Pushdown Automata and Context-Free Grammars 
 
Read K & S 3.4. 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs. 
Do Homework 14. 
 

PDAs and Context-Free Grammars 
 
Theorem:  The class of languages accepted by PDAs is exactly the class of context-free languages. 
 

Recall: context-free languages are languages that can be defined with context-free grammars. 
 
Restate theorem:       Can describe with context-free grammar ⇔ Can accept by PDA 
 

Going One Way 
 
Lemma: Each context-free language is accepted by some PDA. 
Proof (by construction by “top-down parse” conversion algorithm): 
 
The idea:  Let the stack do the work. 
 
Example: Arithmetic expressions 
 
  E → E + T    

E → T 
 T → T * F      ε/ε/E 

  T → F      1    2 
F → (E) 

  F → id    
 
(1)   (2, ε, E), (2, E+T) 
(2)   (2, ε, E), (2, T)  
(3)   (2, ε, T), (2, T*F) 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)  

(7)   (2, id, id), (2, ε) 
(8)   (2, (, (  ), (2, ε) 
(9)   (2, ), )  ), (2, ε) 
(10) (2, +, +), (2, ε) 
(11) (2, *, *), (2, ε) 

The Top-down Parse Conversion Algorithm 
 
Given G = (V, Σ, R, S) 
Construct M such that L(M) = L(G) 
 
M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains: 
 
(1) ((p, ε, ε), (q, S)) 
  push the start symbol on the stack 
 
(2) ((q, ε, A), (q, x)) for each rule A → x in R 
  replace left hand side with right hand side 
 
(3) ((q, a, a), (q, ε)) for each a ∈  Σ 
  read an input character and pop it from the stack 

 
The resulting machine can execute a leftmost derivation of an input string in a top-down fashion. 
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Example of the Algorithm 
L = {anb*an}
 
(1) S → ε   
(2) S → B 
(3) S → aSa 
(4) B → ε 
(5) B → bB 
 
input = a a b b a a 

0 (p, ε, ε), (q, S) 
1 (q, ε, S), (q, ε) 
2 (q, ε, S), (q, B) 
3 (q, ε, S), (q, aSa) 
4 (q, ε, B), (q, ε) 
5 (q, ε, B), (q, bB) 
6 (q, a, a), (q, ε) 
7 (q, b, b), (q, ε) 

trans  state                unread input              stack  
    p    a a b b a a    ε 

0      q    a a b b a a   S 
3      q    a a b b a a   aSa 
6      q       a b b a a   Sa 
3      q       a b b a a   aSaa 
6      q          b b a a   Saa 
2      q          b b a a   Baa 
5      q          b b a a   bBaa 
7      q             b a a   Baa 
5      q             b a a   bBaa 
7      q                a a   Baa 
4      q                a a   aa 
6      q                   a   a 
6      q                   ε   ε 

 
Another Example 

L = {anbmcpdq : m + n = p + q} 
 
(1) S → aSd 
(2) S → T 
(3) S → U 
(4) T → aTc 
(5) T → V 
(6) U → bUd 
(7) U → V 
(8) V → bVc 
(9) V → ε 
 
 
input = a a b c d d 

0 (p, ε, ε), (q, S) 
1 (q, ε, S), (q, aSd) 
2 (q, ε, S), (q,T) 
3 (q, ε, S), (q,U) 
4 (q, ε, T), (q, aTc) 
5 (q, ε, T), (q, V) 
6 (q, ε, U), (q, bUd) 
7 (q, ε, U), (q, V) 
8 (q, ε, V), (q, bVc 
9 (q, ε, V), (q, ε) 
10 (q, a, a), (q, ε) 
11 (q, b, b), (q, ε) 
12 (q, c, c), (q, ε) 
13 (q, d, d), (q, ε) 

 
The Other Way—Build a PDA Directly 

L = {anbmcpdq : m + n = p + q} 
 
(1) S → aSd 
(2) S → T 
(3) S → U 
(4) T → aTc 
(5) T → V 
 

(6) U → bUd 
(7) U → V 
(8) V → bVc 
(9) V → ε 
 
 

                   a//a                        b//a                          c/a/                         d/a/ 
                                        b//a                        c/a/                           d/a/ 
  1    2       3         4 
                                         ε/ε/                       ε/ε/                           ε/ε/ 
input = a a b c d d 
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Notice Nondeterminism 
 
Machines constructed with the algorithm are often nondeterministic, even when they needn't be.  This happens even with trivial 
languages. 

Example:  L = anbn 

 
A grammar for L is: 
 
[1] S → aSb 
[2] S → ε 

A machine M for L is: 
(0)  ((p, ε, ε), (q, S)) 
(1)  ((q, ε, S), (q, aSb)) 
(2)  ((q, ε, S), (q, ε)) 
(3)  ((q, a, a), (q, ε)) 
(4)  ((q, b, b), (q, ε)) 

But transitions 1 and 2 make M nondeterministic. 
 
A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same 
configuration.  A PDA is nondeterministic if it has any nondeterministic transition groups. 
 
A directly constructed machine for L:  
 
 

Going The Other Way 
 
Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar). 
Proof (by construction) 
 
Example:  L = {wcwR : w ∈  {a, b}*} 
 
        a//a                                      a/a/ 
                                  c// 
                  s                                          f 
 
       b//b                                     b/b/ 
 
M = ({s, f}, {a, b, c}, {a, b}, ∆, s,{f}), where: 

 ∆ contains: 
  ((s, a, ε), (s, a)) 
  ((s, b, ε), (s, b)) 
  ((s, c, ε), (f, ε)) 
  ((f, a, a), (f, ε)) 
  ((f, b, b), (f, ε)) 

 
First Step: Make M Simple 

A PDA M is simple iff: 
1. there are no transitions into the start state, and 
2. whenever ((q, x, β), (p, γ) is a transition of M and q is not the start state, then β ∈  Γ, and |γ| ≤ 2. 
 
Step 1:  Add s' and f': 
 
                                             a/ε/a                 a/a/ 
                         ε/ε/Z                      c//                                 ε/Z/ 
                   s'                  s                                       f                            f' 
 
                          b/ε/b                                  b/b/ 
 
Step 2: 
(1) Assure that |β| ≤ 1. 
 
 
(2) Assure that |γ| ≤ 2. 
 
 
(3) Assure that |β| = 1. 
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Making M Simple 
 
 
                                             a/ε/a                 a/a/ 
                         ε/ε/Z                   c//                                 ε/Z/ 
                  s'                   s                                       f                            f' 
 
                            b/ε/b                                b/b/ 
 
 
M = ({s, f, s', f'}, {a, b, c}, {a, b, Z}, ∆, s',{f'}), ∆=  
     ((s', ε, ε), (s, Z))  

((s, a, ε), (s, a))   ((s, a, Z), (s, aZ))   
     ((s, a, a), (s, aa)) 

((s, a, b), (s, ab)) 
((s, b, ε), (s, b))   ((s, b, Z), (s, bZ))  

     ((s, b, a), (s, ba))  
((s, b, b), (s, bb))  

((s, c, ε), (f, ε))   ((s, c, Z), (f, Z))  
     ((s, c, a), (f, a))   

((s, c, b), (f, b))   
((f, a, a), (f, ε))   ((f, a, a), (f, ε)) 

 ((f, b, b), (f, ε))   ((f, b, b), (f, ε)) 
     ((f, ε, Z), (f', ε))  

 
Second Step - Creating the Productions 

 
The basic idea -- simulate a leftmost derivation of M on any input string. 
Example:                 abcba 
                                                     S [1] 
 
                                               <s, Z, f'> [2] 
 
a                         <s, a, f> [4]                                                          <f, Z, f'> [8] 
 
       b                  <s, b, f> [5]                   <f, a, f> [6]                 ε                <f', ε, f'> [10] 
 
                     c           <f, b, f> [7]           a       <f, ε, f> [9]                                 ε 
 
                               b     <f, ε, f> [9]                     ε 
 
                                            ε  
 
If the nonterminal <s1, X, s2> �* w, then the PDA starts in state s1

 with (at least) X on the stack and after consuming w and 
popping the X off the stack, it ends up in state s2. 
 
Start with the rule: 
 S → <s, Z, f’>  where s is the start state, f’ is the (introduced) final state and Z is the stack bottom symbol. 
 
Transitions ((s1, a, X), (s2, YX)) become a set of rules: 
 <s1, X, q> → a <s2, Y, r> <r, X, q>   for a ∈  Σ ∪  {ε}, ∀ q,r ∈  K 
 
Transitions ((s1, a, X), (s2, Y)) becomes a set of rules: 
 <s1, X, q> → a <s2, Y, q>    for a ∈  Σ ∪  {ε}, ∀ q ∈  K 
 
Transitions ((s1, a, X), (s2, ε)) become a rule: 
 <s1, X, s2> → a      for a ∈  Σ ∪  {ε} 
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Creating Productions from Transitions 
 
   S → <s, Z, f'>    [1] 
((s', ε, ε), (s, Z))   
((s, a, Z), (s, aZ))  <s, Z, f'> → a <s, a, f> <f, Z, f'>  [2] 
   <s, Z, s> → a <s, a, f> <f, Z, s>   [x] 
   <s, Z, f> → a <s, a, s> <s, Z, f>  [x] 
   <s, Z, s> → a <s, a, s> <s, Z, f>  [x] 
   <s, Z, s'> → a <s, a, f> <f, Z, s'>  [x] 
((s, a, a), (s, aa))  <s, a, f> → a <s, a, f> <f, a, f>   [3] 
((s, a, b), (s, ab))  … 
((s, b, Z), (s, bZ))  … 
((s, b, a), (s, ba))   <s, a, f> → b <s, b, f> <f, a, f>   [4] 
((s, b, b), (s, bb))   … 
((s, c, Z), (f, Z))  … 
((s, c, a), (f, a))   <s, a, f> → c <f, a, f> 
((s, c, b), (f, b))   <s, b, f> → c <f, b, f>   [5] 
((f, a, a), (f, ε))  <f, a, f> → a <f, ε, f>   [6] 
((f, b, b), (f, ε))  <f, b, f> → b <f, ε, f>   [7] 
((f, ε, Z), (f', ε))  <f, Z, f'> → ε <f', ε, f'>   [8] 
   <f, ε, f> → ε    [9] 
   <f' ε, f'> → ε    [10] 

 
 

Comparing Regular and Context-Free Languages 
 
Regular Languages 
 
• regular exprs. 

• or 
• regular grammars 
• recognize 
• = DFSAs 

Context-Free Languages 
 
• context-free grammars 
 
 
• parse 
• = NDPDAs 
 

 
 
 


