
Lecture Notes 15 Pushdown Automata and Context-Free Languages 1

Pushdown Automata and Context-Free Grammars

Read K & S 3.4.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs.
Do Homework 14.

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem: Can describe with context-free grammar ⇔ Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.
Proof (by construction by “top-down parse” conversion algorithm):

The idea: Let the stack do the work.

Example: Arithmetic expressions

 E → E + T

E → T
 T → T * F ε/ε/E

 T → F 1 2
F → (E)

 F → id

(1) (2, ε, E), (2, E+T)
(2) (2, ε, E), (2, T)
(3) (2, ε, T), (2, T*F)
(4) (2, ε, T), (2, F)
(5) (2, ε, F), (2, (E))
(6) (2, ε, F), (2, id)

(7) (2, id, id), (2, ε)
(8) (2, (, (), (2, ε)
(9) (2,),)), (2, ε)
(10) (2, +, +), (2, ε)
(11) (2, *, *), (2, ε)

The Top-down Parse Conversion Algorithm

Given G = (V, Σ, R, S)
Construct M such that L(M) = L(G)

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

(1) ((p, ε, ε), (q, S))
 push the start symbol on the stack

(2) ((q, ε, A), (q, x)) for each rule A → x in R
 replace left hand side with right hand side

(3) ((q, a, a), (q, ε)) for each a ∈ Σ
 read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Lecture Notes 15 Pushdown Automata and Context-Free Languages 2

Example of the Algorithm
L = {anb*an}

(1) S → ε
(2) S → B
(3) S → aSa
(4) B → ε
(5) B → bB

input = a a b b a a

0 (p, ε, ε), (q, S)
1 (q, ε, S), (q, ε)
2 (q, ε, S), (q, B)
3 (q, ε, S), (q, aSa)
4 (q, ε, B), (q, ε)
5 (q, ε, B), (q, bB)
6 (q, a, a), (q, ε)
7 (q, b, b), (q, ε)

trans state unread input stack
 p a a b b a a ε

0 q a a b b a a S
3 q a a b b a a aSa
6 q a b b a a Sa
3 q a b b a a aSaa
6 q b b a a Saa
2 q b b a a Baa
5 q b b a a bBaa
7 q b a a Baa
5 q b a a bBaa
7 q a a Baa
4 q a a aa
6 q a a
6 q ε ε

Another Example

L = {anbmcpdq : m + n = p + q}

(1) S → aSd
(2) S → T
(3) S → U
(4) T → aTc
(5) T → V
(6) U → bUd
(7) U → V
(8) V → bVc
(9) V → ε

input = a a b c d d

0 (p, ε, ε), (q, S)
1 (q, ε, S), (q, aSd)
2 (q, ε, S), (q,T)
3 (q, ε, S), (q,U)
4 (q, ε, T), (q, aTc)
5 (q, ε, T), (q, V)
6 (q, ε, U), (q, bUd)
7 (q, ε, U), (q, V)
8 (q, ε, V), (q, bVc
9 (q, ε, V), (q, ε)
10 (q, a, a), (q, ε)
11 (q, b, b), (q, ε)
12 (q, c, c), (q, ε)
13 (q, d, d), (q, ε)

The Other Way—Build a PDA Directly

L = {anbmcpdq : m + n = p + q}

(1) S → aSd
(2) S → T
(3) S → U
(4) T → aTc
(5) T → V

(6) U → bUd
(7) U → V
(8) V → bVc
(9) V → ε

 a//a b//a c/a/ d/a/
 b//a c/a/ d/a/
 1 2 3 4
 ε/ε/ ε/ε/ ε/ε/
input = a a b c d d

Lecture Notes 15 Pushdown Automata and Context-Free Languages 3

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial
languages.

Example: L = anbn

A grammar for L is:

[1] S → aSb
[2] S → ε

A machine M for L is:
(0) ((p, ε, ε), (q, S))
(1) ((q, ε, S), (q, aSb))
(2) ((q, ε, S), (q, ε))
(3) ((q, a, a), (q, ε))
(4) ((q, b, b), (q, ε))

But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same
configuration. A PDA is nondeterministic if it has any nondeterministic transition groups.

A directly constructed machine for L:

Going The Other Way

Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar).
Proof (by construction)

Example: L = {wcwR : w ∈ {a, b}*}

 a//a a/a/
 c//
 s f

 b//b b/b/

M = ({s, f}, {a, b, c}, {a, b}, ∆, s,{f}), where:

 ∆ contains:
 ((s, a, ε), (s, a))
 ((s, b, ε), (s, b))
 ((s, c, ε), (f, ε))
 ((f, a, a), (f, ε))
 ((f, b, b), (f, ε))

First Step: Make M Simple

A PDA M is simple iff:
1. there are no transitions into the start state, and
2. whenever ((q, x, β), (p, γ) is a transition of M and q is not the start state, then β ∈ Γ, and |γ| ≤ 2.

Step 1: Add s' and f':

 a/ε/a a/a/
 ε/ε/Z c// ε/Z/
 s' s f f'

 b/ε/b b/b/

Step 2:
(1) Assure that |β| ≤ 1.

(2) Assure that |γ| ≤ 2.

(3) Assure that |β| = 1.

Lecture Notes 15 Pushdown Automata and Context-Free Languages 4

Making M Simple

 a/ε/a a/a/
 ε/ε/Z c// ε/Z/
 s' s f f'

 b/ε/b b/b/

M = ({s, f, s', f'}, {a, b, c}, {a, b, Z}, ∆, s',{f'}), ∆=
 ((s', ε, ε), (s, Z))

((s, a, ε), (s, a)) ((s, a, Z), (s, aZ))
 ((s, a, a), (s, aa))

((s, a, b), (s, ab))
((s, b, ε), (s, b)) ((s, b, Z), (s, bZ))

 ((s, b, a), (s, ba))
((s, b, b), (s, bb))

((s, c, ε), (f, ε)) ((s, c, Z), (f, Z))
 ((s, c, a), (f, a))

((s, c, b), (f, b))
((f, a, a), (f, ε)) ((f, a, a), (f, ε))

 ((f, b, b), (f, ε)) ((f, b, b), (f, ε))
 ((f, ε, Z), (f', ε))

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.
Example: abcba
 S [1]

 <s, Z, f'> [2]

a <s, a, f> [4] <f, Z, f'> [8]

 b <s, b, f> [5] <f, a, f> [6] ε <f', ε, f'> [10]

 c <f, b, f> [7] a <f, ε, f> [9] ε

 b <f, ε, f> [9] ε

 ε

If the nonterminal <s1, X, s2> �* w, then the PDA starts in state s1

 with (at least) X on the stack and after consuming w and
popping the X off the stack, it ends up in state s2.

Start with the rule:
 S → <s, Z, f’> where s is the start state, f’ is the (introduced) final state and Z is the stack bottom symbol.

Transitions ((s1, a, X), (s2, YX)) become a set of rules:
 <s1, X, q> → a <s2, Y, r> <r, X, q> for a ∈ Σ ∪ {ε}, ∀ q,r ∈ K

Transitions ((s1, a, X), (s2, Y)) becomes a set of rules:
 <s1, X, q> → a <s2, Y, q> for a ∈ Σ ∪ {ε}, ∀ q ∈ K

Transitions ((s1, a, X), (s2, ε)) become a rule:
 <s1, X, s2> → a for a ∈ Σ ∪ {ε}

Lecture Notes 15 Pushdown Automata and Context-Free Languages 5

Creating Productions from Transitions

 S → <s, Z, f'> [1]
((s', ε, ε), (s, Z))
((s, a, Z), (s, aZ)) <s, Z, f'> → a <s, a, f> <f, Z, f'> [2]
 <s, Z, s> → a <s, a, f> <f, Z, s> [x]
 <s, Z, f> → a <s, a, s> <s, Z, f> [x]
 <s, Z, s> → a <s, a, s> <s, Z, f> [x]
 <s, Z, s'> → a <s, a, f> <f, Z, s'> [x]
((s, a, a), (s, aa)) <s, a, f> → a <s, a, f> <f, a, f> [3]
((s, a, b), (s, ab)) …
((s, b, Z), (s, bZ)) …
((s, b, a), (s, ba)) <s, a, f> → b <s, b, f> <f, a, f> [4]
((s, b, b), (s, bb)) …
((s, c, Z), (f, Z)) …
((s, c, a), (f, a)) <s, a, f> → c <f, a, f>
((s, c, b), (f, b)) <s, b, f> → c <f, b, f> [5]
((f, a, a), (f, ε)) <f, a, f> → a <f, ε, f> [6]
((f, b, b), (f, ε)) <f, b, f> → b <f, ε, f> [7]
((f, ε, Z), (f', ε)) <f, Z, f'> → ε <f', ε, f'> [8]
 <f, ε, f> → ε [9]
 <f' ε, f'> → ε [10]

Comparing Regular and Context-Free Languages

Regular Languages

• regular exprs.

• or
• regular grammars
• recognize
• = DFSAs

Context-Free Languages

• context-free grammars

• parse
• = NDPDAs

