Pushdown Automata and Context-Free Grammars

Read K \& S 3.4.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs. Do Homework 14.

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.
Recall: context-free languages are languages that can be defined with context-free grammars.
Restate theorem: Can describe with context-free grammar \Leftrightarrow Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.
Proof (by construction by "top-down parse" conversion algorithm):
The idea: Let the stack do the work.

Example: Arithmetic expressions
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E})$
$\mathrm{F} \rightarrow \mathrm{id}$
(1) $(2, \varepsilon, \mathrm{E}),(2, \mathrm{E}+\mathrm{T})$
(7) $(2, \mathrm{id}, \mathrm{id}),(2, \varepsilon)$
(2) $(2, \varepsilon, \mathrm{E}),(2, \mathrm{~T})$
(8) $(2,(,(),(2, \varepsilon)$
(3) $(2, \varepsilon, T),(2, T * F)$
(9) $(2),),),(2, \varepsilon)$
(4) $(2, \varepsilon, T),(2, F)$
(10) $(2,+,+),(2, \varepsilon)$
(5) $(2, \varepsilon, F),(2,(E))$
(6) $(2, \varepsilon, F),(2, i d)$

(11) $\left(2,{ }^{*}, *\right),(2, \varepsilon)$

The Top-down Parse Conversion Algorithm

Given $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$
Construct M such that $L(M)=L(G)$
$\mathrm{M}=(\{\mathrm{p}, \mathrm{q}\}, \Sigma, \mathrm{V}, \Delta, \mathrm{p},\{\mathrm{q}\})$, where Δ contains:
(1) $((\mathrm{p}, \varepsilon, \varepsilon),(\mathrm{q}, \mathrm{S}))$
push the start symbol on the stack
(2) ($(\mathrm{q}, \varepsilon, \mathrm{A}),(\mathrm{q}, \mathrm{x}))$ for each rule $\mathrm{A} \rightarrow \mathrm{x}$ in R replace left hand side with right hand side
(3) $((\mathrm{q}, \mathrm{a}, \mathrm{a}),(\mathrm{q}, \varepsilon))$ for each $\mathrm{a} \in \Sigma$ read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{*} \mathrm{a}^{\mathrm{n}}\right\}$

(1)	$S \rightarrow \varepsilon$
(2)	$\mathrm{S} \rightarrow \mathrm{B}$
(3)	$\mathrm{S} \rightarrow \mathrm{aSa}$
(4)	$\mathrm{B} \rightarrow \varepsilon$
(5)	$\mathrm{B} \rightarrow \mathrm{bB}$

input $=\mathrm{a} a \mathrm{~b} \mathrm{~b} \mathrm{a} \mathrm{a}$

trans	state
	p
0	q
3	q
6	q
3	q
6	q
2	q
5	q
7	q
5	q
7	q
4	q
6	q
6	q

$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{p}} \mathrm{d}^{\mathrm{q}}: \mathrm{m}+\mathrm{n}=\mathrm{p}+\mathrm{q}\right\}$
(1) $\quad S \rightarrow a S d$
(2) $\quad S \rightarrow T$
(3) $\quad \mathrm{S} \rightarrow \mathrm{U}$
(4) $\quad \mathrm{T} \rightarrow \mathrm{aTc}$
(5) $\quad \mathrm{T} \rightarrow \mathrm{V}$
(6) $\mathrm{U} \rightarrow \mathrm{bUd}$
(7) $\quad \mathrm{U} \rightarrow \mathrm{V}$
(8) $\quad \mathrm{V} \rightarrow \mathrm{bVc}$
(9) $\quad V \rightarrow \varepsilon$
input $=\mathrm{a} a \mathrm{bcdd}$

Example of the Algorithm

0	$(\mathrm{p}, \varepsilon, \varepsilon),(\mathrm{q}, \mathrm{S})$
1	$(\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \varepsilon)$
2	$(\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \mathrm{B})$
3	$(\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \mathrm{aSa})$
4	$(\mathrm{q}, \varepsilon, \mathrm{B}),(\mathrm{q}, \varepsilon)$
5	$(\mathrm{q}, \varepsilon, \mathrm{B}),(\mathrm{q}, \mathrm{bB})$
6	$(\mathrm{q}, \mathrm{a}, \mathrm{a}),(\mathrm{q}, \varepsilon)$
7	$(\mathrm{q}, \mathrm{b}, \mathrm{b}),(\mathrm{q}, \varepsilon)$

unread input	stack
a a b b a a	ε
a a b b a a	S
a a b b a a	aSa
a b b a a	Sa
a b b a a	aSaa
b b a a	Saa
b b a a	Baa
b b a a	bBaa
b a a	Baa
b a a	bBaa
a a	Baa
a a	aa
a	a
ε	ε

Another Example

0	$(\mathrm{p}, \varepsilon, \varepsilon),(\mathrm{q}, \mathrm{S})$
1	$(\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \mathrm{aSd})$
2	$(\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \mathrm{T})$
3	$(\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \mathrm{U})$
4	$(\mathrm{q}, \varepsilon, \mathrm{T}),(\mathrm{q}, \mathrm{aTc})$
5	$(\mathrm{q}, \varepsilon, \mathrm{T}),(\mathrm{q}, \mathrm{V})$
6	$(\mathrm{q}, \varepsilon, \mathrm{U}),(\mathrm{q}, \mathrm{bUd})$
7	$(\mathrm{q}, \varepsilon, \mathrm{U}),(\mathrm{q}, \mathrm{V})$
8	$(\mathrm{q}, \varepsilon, \mathrm{V}),(\mathrm{q}, \mathrm{bVc}$
9	$(\mathrm{q}, \varepsilon, \mathrm{V}),(\mathrm{q}, \varepsilon)$
10	$(\mathrm{q}, \mathrm{a}, \mathrm{a}),(\mathrm{q}, \varepsilon)$
11	$(\mathrm{q}, \mathrm{b}, \mathrm{b}),(\mathrm{q}, \varepsilon)$
12	$(\mathrm{q}, \mathrm{c}, \mathrm{c}),(\mathrm{q}, \varepsilon)$
13	$(\mathrm{q}, \mathrm{d}, \mathrm{d}),(\mathrm{q}, \varepsilon)$

The Other Way—Build a PDA Directly
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{p}} \mathrm{d}^{\mathrm{q}}: \mathrm{m}+\mathrm{n}=\mathrm{p}+\mathrm{q}\right\}$
(1) $\quad S \rightarrow a S d$
(6) $\quad \mathrm{U} \rightarrow \mathrm{bUd}$
(2) $\quad S \rightarrow T$
(3) $\quad \mathrm{S} \rightarrow \mathrm{U}$
(7) $\quad \mathrm{U} \rightarrow \mathrm{V}$
(8) $\quad \mathrm{V} \rightarrow \mathrm{bVc}$
(4) $\mathrm{T} \rightarrow \mathrm{aTc}$
(9)
$\mathrm{V} \rightarrow \varepsilon$
(5) $\quad \mathrm{T} \rightarrow \mathrm{V}$

input $=a \operatorname{abcdd}$

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial languages.

$$
\text { Example: } L=a^{n} b^{n}
$$

A grammar for L is: A machine M for L is:
[1] $\mathrm{S} \rightarrow \mathrm{aSb}$
[2] $S \rightarrow \varepsilon$
(1) $((\mathrm{q}, \varepsilon, \mathrm{S}),(\mathrm{q}, \mathrm{aSb}))$
(2) $((\mathrm{q}, \varepsilon, S),(\mathrm{q}, \varepsilon))$
(3) $((\mathrm{q}, \mathrm{a}, \mathrm{a}),(\mathrm{q}, \varepsilon))$
(4) $((\mathrm{q}, \mathrm{b}, \mathrm{b}),(\mathrm{q}, \varepsilon))$
(0) $((\mathrm{p}, \varepsilon, \varepsilon),(\mathrm{q}, \mathrm{S}))$

But transitions 1 and 2 make M nondeterministic.
A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same configuration. A PDA is nondeterministic if it has any nondeterministic transition groups.

A directly constructed machine for L :

Going The Other Way

Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a contextfree grammar).
Proof (by construction)
Example: $L=\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$

Δ contains:
$((s, a, \varepsilon),(s, a))$
((s, b, $\varepsilon),(\mathrm{s}, \mathrm{b}))$
((s, c, $\varepsilon),(\mathrm{f}, \varepsilon))$
((f, a, a), (f, ع))
((f, b, b), (f, $\varepsilon)$)
$\mathrm{M}=(\{\mathrm{s}, \mathrm{f}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}, \Delta, \mathrm{s},\{\mathrm{f}\})$, where:

First Step: Make M Simple

A PDA M is simple iff:

1. there are no transitions into the start state, and
2. whenever $((q, x, \beta),(p, \gamma)$ is a transition of M and q is not the start state, then $\beta \in \Gamma$, and $|\gamma| \leq 2$.

Step 1: Add s' and f':

Step 2:
(1) \quad Assure that $|\beta| \leq 1$.
(2) Assure that $|\gamma| \leq 2$.
(3) Assure that $|\beta|=1$.

Making M Simple

$\mathrm{M}=\left(\left\{\mathrm{s}, \mathrm{f}, \mathrm{s}^{\prime}, \mathrm{f}^{\prime}\right\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{Z}\}, \Delta, \mathrm{s}^{\prime},\left\{\mathrm{f}^{\prime}\right\}\right), \Delta=$	
	((s', $\varepsilon, \varepsilon),(\mathrm{s}, \mathrm{Z})$)
$((s, a, \varepsilon),(s, a))$	((s, a, Z), (s, aZ))
	((s, a, a), (s, aa))
	((s, a, b), (s, ab))
$((\mathrm{s}, \mathrm{b}, \mathrm{\varepsilon}),(\mathrm{s}, \mathrm{b})$)	((s, b, Z), (s, bZ))
	((s, b, a), (s, ba))
	((s, b, b), (s, bb))
$((\mathrm{s}, \mathrm{c}, \varepsilon),(\mathrm{f}, \varepsilon))$	((s, c, Z), (f, Z))
	((s, c, a), (f, a))
	((s, c, b), (f, b))
((f, a, a), (f, ع))	((f, a, a), (f, ع))
$((\mathrm{f}, \mathrm{b}, \mathrm{b}),(\mathrm{f}, \varepsilon))$	((f, b, b), (f, ε))
	((f, $\left.\varepsilon, \mathrm{Z}),\left(\mathrm{f}^{\prime}, \varepsilon\right)\right)$

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.
Example: abcba

$$
\begin{gathered}
\mathrm{S}[1] \\
\mathrm{l}, \mathrm{f}^{\prime}>[2] \\
\left\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}^{2}>\right. \\
\hline
\end{gathered}
$$

If the nonterminal $\left\langle\mathrm{s}_{1}, \mathrm{X}, \mathrm{s}_{2}\right\rangle \Rightarrow^{*} \mathrm{w}$, then the PDA starts in state s_{1} with (at least) X on the stack and after consuming w and popping the X off the stack, it ends up in state s_{2}.

Start with the rule:
$\mathrm{S} \rightarrow\left\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}^{\prime}\right\rangle$ where s is the start state, f^{\prime} is the (introduced) final state and Z is the stack bottom symbol.
Transitions (($\left.\left.\mathrm{s}_{1}, \mathrm{a}, \mathrm{X}\right),\left(\mathrm{s}_{2}, \mathrm{YX}\right)\right)$ become a set of rules:
$\left\langle\mathrm{s}_{1}, \mathrm{X}, \mathrm{q}>\rightarrow \mathrm{a}<\mathrm{s}_{2}, \mathrm{Y}, \mathrm{r}><\mathrm{r}, \mathrm{X}, \mathrm{q}>\right.$ for $\mathrm{a} \in \Sigma \cup\{\varepsilon\}, \forall \mathrm{q}, \mathrm{r} \in \mathrm{K}$
Transitions $\left(\left(\mathrm{s}_{1}, \mathrm{a}, \mathrm{X}\right),\left(\mathrm{s}_{2}, \mathrm{Y}\right)\right)$ becomes a set of rules:
$<\mathrm{s}_{1}, \mathrm{X}, \mathrm{q}>\rightarrow \mathrm{a}<\mathrm{s}_{2}, \mathrm{Y}, \mathrm{q}>\quad$ for $\mathrm{a} \in \Sigma \cup\{\varepsilon\}, \forall \mathrm{q} \in \mathrm{K}$
Transitions (($\left.\left.\mathrm{s}_{1}, \mathrm{a}, \mathrm{X}\right),\left(\mathrm{s}_{2}, \varepsilon\right)\right)$ become a rule:
$\left\langle\mathrm{s}_{1}, \mathrm{X}, \mathrm{s}_{2}\right\rangle \rightarrow \mathrm{a} \quad$ for $\mathrm{a} \in \Sigma \cup\{\varepsilon\}$

Creating Productions from Transitions

$\left(\left(\mathrm{s}^{\prime}, \varepsilon, \varepsilon\right),(\mathrm{s}, \mathrm{Z})\right)$
((s, a, Z), (s, aZ))
$((s, a, a),(s, a a))$
((s, a, b), (s, ab))
((s, b, Z), (s, bZ))
((s, b, a), (s, ba))
((s, b, b), (s, bb))
((s, c, Z), (f, Z))
((s, c, a), (f, a))
((s, c, b), (f, b))
((f, a, a), (f, ع))
((f, b, b), (f, ع))
$\left((f, \varepsilon, Z),\left(f^{\prime}, \varepsilon\right)\right)$
$\mathrm{S} \rightarrow\left\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}^{\prime}\right\rangle$
$\left\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}^{\prime}\right\rangle \rightarrow \mathrm{a}\langle\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle\left\langle\mathrm{f}, \mathrm{Z}, \mathrm{f}^{\prime}\right\rangle$
$\langle\mathrm{s}, \mathrm{Z}, \mathrm{s}\rangle \rightarrow \mathrm{a}\langle\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle\langle\mathrm{f}, \mathrm{Z}, \mathrm{s}\rangle$
[x]
$\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}\rangle \rightarrow \mathrm{a}\langle\mathrm{s}, \mathrm{a}, \mathrm{s}\rangle\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}\rangle$
[x]
$\langle\mathrm{s}, \mathrm{Z}, \mathrm{s}\rangle \rightarrow \mathrm{a}\langle\mathrm{s}, \mathrm{a}, \mathrm{s}\rangle\langle\mathrm{s}, \mathrm{Z}, \mathrm{f}\rangle$
[x]
$\left\langle\mathrm{s}, \mathrm{Z}, \mathrm{s}^{\prime}\right\rangle \rightarrow \mathrm{a}\langle\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle\left\langle\mathrm{f}, \mathrm{Z}, \mathrm{s}^{\prime}\right\rangle$
$\langle\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle \rightarrow \mathrm{a}\langle\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle\langle\mathrm{f}, \mathrm{a}, \mathrm{f}\rangle$
[x]
\cdots
$<\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle \rightarrow \mathrm{b}<\mathrm{s}, \mathrm{b}, \mathrm{f}\rangle\langle\mathrm{f}, \mathrm{a}, \mathrm{f}\rangle$
...
...
$\langle\mathrm{s}, \mathrm{a}, \mathrm{f}\rangle \rightarrow \mathrm{c}\langle\mathrm{f}, \mathrm{a}, \mathrm{f}\rangle$
$\langle\mathrm{s}, \mathrm{b}, \mathrm{f}\rangle \rightarrow \mathrm{c}\langle\mathrm{f}, \mathrm{b}, \mathrm{f}\rangle$
$\langle\mathrm{f}, \mathrm{a}, \mathrm{f}\rangle \rightarrow \mathrm{a}\langle\mathrm{f}, \varepsilon, \mathrm{f}\rangle$
$\langle\mathrm{f}, \mathrm{b}, \mathrm{f}\rangle \rightarrow \mathrm{b}\langle\mathrm{f}, \varepsilon, \mathrm{f}\rangle$
$\left\langle\mathrm{f}, \mathrm{Z}, \mathrm{f}^{\prime}\right\rangle \rightarrow \varepsilon<\mathrm{f}^{\prime}, \varepsilon, \mathrm{f}^{\prime}>$
[5]
[6]
[7]
$\langle\mathrm{f}, \varepsilon, \mathrm{f}\rangle \rightarrow \varepsilon$
[8]
$<f^{\prime} \varepsilon, \mathrm{f}^{\prime}>\rightarrow \varepsilon$
[10]

Comparing Regular and Context-Free Languages

Regular Languages

- regular exprs.
- or
- regular grammars
- recognize
- = DFSAs

Context-Free Languages

- context-free grammars
- parse
- = NDPDAs

