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Grammars and Normal Forms  
 
Read K & S 3.7. 

Recognizing Context-Free Languages 
 
Two notions of recognition: 
 

(1) Say yes or no, just like with FSMs 
 
 

(2) Say yes or no, AND 
 

   if yes, describe the structure 
 
 
 
 
 
 
 
 
 
 
                               a        +           b         *           c 
 
Now it's time to worry about extracting structure (and doing so efficiently). 
 

Optimizing Context-Free Languages 
 
For regular languages: 
Computation = operation of FSMs.  So, 

Optimization   =  Operations on FSMs: 
    Conversion to deterministic FSMs 
    Minimization of FSMs 
For context-free languages: 
Computation = operation of parsers.  So, 
  Optimization   = Operations on languages 

 Operations on grammars 
 Parser design 

 
Before We Start: Operations on Grammars 

 
There are lots of ways to transform grammars so that they are more useful for a particular purpose. 
the basic idea: 
1. Apply transformation 1 to G to get of undesirable property 1.  Show that the language generated by G is unchanged. 
2. Apply transformation 2 to G to get rid of undesirable property 2.  Show that the language generated by G is unchanged AND 

that undesirable property 1 has not been reintroduced. 
3. Continue until the grammar is in the desired form. 
 
Examples: 
• Getting rid of ε rules (nullable rules) 
• Getting rid of sets of rules with a common initial terminal, e.g., 

• A → aB, A → aC become A → aD, D → B | C 
• Conversion to normal forms 
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Normal Forms 
 
If you want to design algorithms, it is often useful to have a limited number of input forms that you have to deal with. 
 
Normal forms are designed to do just that.  Various ones have been developed for various purposes.   
 
Examples: 
 
• Clause form for logical expressions to be used in resolution theorem proving 
• Disjunctive normal form for database queries so that they can be entered in a query by example grid. 
• Various normal forms for grammars to support specific parsing techniques. 
 

Clause Form for Logical Expressions 
 
∀ x : [Roman(x) ∧  know(x, Marcus)] →  [hate(x, Caesar) ∨   (∀ y : ∃ z : hate(y, z) → thinkcrazy(x, y))] 
 

becomes 
 
¬Roman(x) ∨  ¬know(x, Marcus) ∨  hate(x, Caesar) ∨  ¬hate(y, z) ∨  thinkcrazy(x, z) 
 

Disjunctive Normal Form for Queries 
 
(category = fruit or category = vegetable) 
  and 
(supplier = A or supplier = B) 
 

becomes 
 
(category = fruit and supplier = A)      or 
(category = fruit and supplier = B)   or 
(category = vegetable and supplier = A)  or 
(category = vegetable and supplier = B) 
 
 

Category Supplier Price 
fruit A  
fruit B  
vegetable A  
vegetable B  

 
Normal Forms for Grammars 

 
Two of the most common are:  
 
• Chomsky Normal Form, in which all rules are of one of the following two forms:  

• X → a, where a ∈  Σ,  or 
• X → BC, where B and C are nonterminals in G 
 

• Greibach Normal Form, in which all rules are of the following form: 
• X → a β, where a ∈  Σ and β is a (possibly empty) string of nonterminals 

 
If L is a context-free language that does not contain ε, then if G is a grammar for L, G can be rewritten into both of these normal 
forms. 
 



Lecture Notes 16                                     Grammars and Normal Forms   3

What Are Normal Forms Good For? 
Examples: 
• Chomsky Normal Form: 

• X → a, where a ∈  Σ,  or 
• X → BC, where B and C are nonterminals in G 

♦  The branching factor is precisely 2.  Tree building algorithms can take advantage of that. 
 
• Greibach Normal Form 

• X → a β, where a ∈  Σ and β is a (possibly empty) string of nonterminals 
♦ Precisely one nonterminal is generated for each rule application.  This means that we can put a bound on the number of rule 
applications in any successful derivation. 

Conversion to Chomsky Normal Form 
 
Let G be a grammar for the context-free language L where ε ∉  L. 
We construct G', an equivalent grammar in Chomsky Normal Form by: 
0. Initially, let G' = G. 
1. Remove from G' all ε productions: 

1.1. If there is a rule A → αBβ and B is nullable, add the rule A → αβ and delete the rule B → ε. 
Example: 

S → aA  
A → B | CD 
B → ε 
B → a 
C → BD 
D → b  
D → ε 

Conversion to Chomsky Normal Form 
 
2. Remove from G' all unit productions (rules of the form A → B, where B is a nonterminal): 

2.1. Remove from G' all unit productions of the form A → A. 
2.2. For all nonterminals A, find all nonterminals B such that A �* B, A ≠ B. 
2.3. Create G'' and add to it all rules in G' that are not unit productions. 
2.4. For all A and B satisfying 3.2, add to G''  

A → y1 | y2 | … where B → y1 | y2 | is in G". 
2.5. Set G' to G''. 
Example: A → a 

 A → B 
 A → EF 
 B → A 
 B → CD 
 B → C 
 C → ab 

At this point, all rules whose right hand sides have length 1 are in Chomsky Normal Form. 
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Conversion to Chomsky Normal Form 
 
3. Remove from G' all productions P whose right hand sides have length greater than 1 and include a terminal (e.g., A → 

aB or A → BaC): 
3.1. Create a new nonterminal Ta for each terminal a in Σ. 
3.2. Modify each production P by substituting Ta for each terminal a. 
3.3. Add to G', for each Ta, the rule Ta → a 
 
Example: 

A → aB 
A → BaC 
A → BbC 
 
Ta → a   
Tb → b 

Conversion to Chomsky Normal Form 
 
4. Remove from G' all productions P whose right hand sides have length greater than 2 (e.g., A → BCDE) 

4.1. For each P of the form A → N1N2N3N4…Nn, n > 2, create new nonterminals M2, M3, … Mn-1. 
4.2. Replace P with the rule A → N1M2. 
4.3. Add the rules M2 → N2M3, M3 → N3M4, … Mn-1 → Nn-1Nn 

 
Example: 

A → BCDE      (n = 4) 
 

A → BM2 
M2 → C M3 
M3 → DE 
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Top Down Parsing 
 
Read K & S 3.8. 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Parsing, Sections 1 and 2. 
Do Homework 15. 

Parsing 
 
Two basic approaches: 
 
Top Down 
 
E      �   E   �  E 
             
             E +             T            . +      T 
       . 
       . 
       id 
 
Bottom Up 
              E 
 
       E 
 
       T  T 
 
   F    F  F 
 
id + id   �  id   +   id �   id    +           id 

 
A Simple Parsing Example 

 
A simple top-down parser for arithmetic expressions, given the grammar 
 
[1]  E → E + T 
[2]  E → T 
[3]  T → T * F 
[4]  T → F 
[5]  F → (E) 
[6]  F → id  
[7]  F → id(E) 
 
A PDA that does a top down parse: 
 
(0)   (1, ε, ε), (2, E) 
(1)   (2, ε, E), (2, E+T) 
(2)   (2, ε, E), (2, T)  
(3)   (2, ε, T), (2, T*F) 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)  

(7)   (2, ε, F), (2, id(E)) 
(8)   (2, id, id), (2, ε) 
(9)   (2, (, (  ), (2, ε) 
(10) (2, ), )  ), (2, ε) 
(11) (2, +, +), (2, ε) 
(12) (2, *, *), (2, ε) 
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How Does It Work? 
 
Example:             id + id * id(id) 
 
Stack:   
 
 
 
 
 
 
   E 
 

What Does It Produce? 
 
The leftmost derivation of the string.  Why? 
 
E � E + T � T + T � F + T � id + T � 
   id + T * F � id + F * F � id + id * F � 
   id + id * id(E) � id + id * id(T) �  

  id + id * id(F) � id + id * id(id) 
 
     E 

 
          E           +    T 
 
          T             T     *      F 
 
          F            F    id  (   E   ) 
  
          id            id              T 
 
                    F 
 
                    id 

 
But the Process Isn't Deterministic 

 
(0)   (1, ε, ε), (2, E) 
(1)   (2, ε, E), (2, E+T)      nondeterministic 
(2)   (2, ε, E), (2, T)  
(3)   (2, ε, T), (2, T*F)   nondeterministic 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)    nondeterministic 
(7)   (2, ε, F), (2, id(E)) 
(8)   (2, id, id), (2, ε) 
(9)   (2, (, (  ), (2, ε) 
(10) (2, ), )  ), (2, ε) 
(11) (2, +, +), (2, ε) 
(12) (2, *, *), (2, ε) 
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Is Nondeterminism A Problem? 
Yes. 
 
In the case of regular languages, we could cope with nondeterminism in either of two ways: 
• Create an equivalent deterministic recognizer (FSM) 
• Simulate the nondeterministic FSM in a number of steps that was still linear in the length of the input string. 
 
For context-free languages, however, 
• The best straightforward general algorithm for recognizing a string is O(n3) and the best (very complicated) algorithm is 

based on a reduction to matrix multiplication, which may get close to O(n2). 
 
We'd really like to find a deterministic parsing algorithm that could run in time proportional to the length of the input string. 

 
Is It Possible to Eliminate Nondeterminism? 

 
In this case: Yes 
 
In general: No 
 
Some definitions: 
 
• A PDA M is deterministic if it has no two transitions such that for some (state, input, stack sequence) the two transitions 

could both be taken. 
 
• A language L is deterministic context-free if L$ = L(M) for some deterministic PDA M. 
 
Theorem:  The class of deterministic context-free languages is a proper subset of the class of context-free languages. 
 
Proof:  Later. 

Adding a Terminator to the Language 
 
We define the class of deterministic context-free languages with respect to a terminator ($) because we want that class to be as 
large as possible.   
 
Theorem:  Every deterministic CFL (as just defined) is a context-free language. 
 
Proof: 
 
 
 
Without the terminator ($), many seemingly deterministic cfls aren't.  Example: 
  a* ∪  {anbn : n> 0} 

 
Possible Solutions to the Nondeterminism Problem 

 
1) Modify the language 

• Add a terminator $ 
2) Change the parsing algorithm 
3) Modify the grammar 
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Modifying the Parsing Algorithm 
 
What if we add the ability to look one character ahead in the input string?   
 
Example:      id + id * id(id) 
         ���� 
E � E + T � T + T � F + T � id + T � 
   id + T * F � id + F * F � id + id * F  
 
Considering transitions: 

(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)     
(7)   (2, ε, F), (2, id(E)) 

 
If we add to the state an indication of what character is next, we have: 

(5)   (2, (, ε, F), (2, (E) ) 
(6)   (2, id, ε, F), (2, id)     
(7)   (2, id, ε, F), (2, id(E)) 

Modifying the Language 
 
So we've solved part of the problem.  But what do we do when we come to the end of the input?  What will be the state indicator 
then? 
 
The solution is to modify the language.  Instead of building a machine to accept L, we will build a machine to accept L$. 
 

Using Lookahead 
 
 
[1]  E → E + T 
[2]  E → T 
[3]  T → T * F 
[4]  T → F 
[5]  F → (E) 
[6]  F → id  
[7]  F → id(E) 
 

(0) (1, ε, ε), (2, E)) 
(1) (2, ε, E), (2, E+T)  
(2) (2, ε, E), (2, T)  
(3) (2, ε, T), (2, T*F) 
(4) (2, ε, T), (2, F) 
(5) (2, (, ε, F), (2, (E) ) 
(6) (2, id, ε, F), (2, id)  
(7) (2, id, ε, F),(2, id(E)) 
(8) (2, id, id), (2, ε) 
(9) (2, (, (  ), (2, ε) 
(10) (2, ), )  ), (2, ε) 
(11) (2, +, +), (2, ε) 
(12) (2, *, *), (2, ε) 

 
For now, we'll ignore the issue of when we read the lookahead character and the fact that we only care about it if the top symbol 
on the stack is F. 

Possible Solutions to the Nondeterminism Problem 
 
1) Modify the language 

• Add a terminator $ 
2) Change the parsing algorithm 

• Add one character look ahead 
3) Modify the grammar 
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Modifying the Grammar 
 
Getting rid of identical first symbols: 
 
[6]  F → id  
[7]  F → id(E) 

(6) (2, id, ε, F),(2, id)  
(7) (2, id, ε, F),(2, id(E)) 

 
Replace with: 
 
[6']  F → id A  
[7']  A → ε 
[8']  A → (E) 

(6') (2, id, ε, F), (2, id A)  
(7') (2, ¬¬¬¬ (, ε, A), (2, ε) 
(8') (2, (, ε, A), (2, (E)) 

 
The general rule for left factoring: 
 
Whenever  A → αβ1 
  A → αβ2 …   
  A → αβn  
are rules with α ≠ ε and n ≥ 2, then replace them by the rules: 

A → αA' 
 A' → β1 
 A' → β2 … 
 A' → βn 

 
Modifying the Grammar 

 
Getting rid of left recursion: 
 
[1]  E → E + T 
[2]  E → T 

(1)   (2, ε, E), (2, E+T) 
(2)   (2, ε, E), (2, T)  

 
The problem: 
       E 
 
     E  +   T 
 
    E + T 
Replace with: 
 
[1]  E → T E' 
[2]  E' → + T E' 
[3]  E' → ε 

(1)   (2, ε, E), (2, T E') 
(2)   (2, ε, E'), (2, + T E') 
(3)   (2, ε, E'), (2, ε) 
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Getting Rid of Left Recursion 
 
The general rule for eliminating left recursion: 
If G contains the following rules: 
 
A → Aα1 
A → Aα2  … 
A → Aα3 
A → Aαn 
 
A → β1   (where β's do not start with Aα) 
A → β2   
…    
A → βm  
 
and n > 0, then 

Replace them with: 
 
A' → α1A' 
A' → α2A'  … 
A' → α3A' 
A' → αnA' 
A' → ε 
A → β1A' 
A → β2A'  
 … 
A → βmA' 
 

 
Possible Solutions to the Nondeterminism Problem 

 
I. Modify the language 

A. Add a terminator $ 
II. Change the parsing algorithm 

A. Add one character look ahead 
III. Modify the grammar 

A. Left factor 
B. Get rid of left recursion 

 
LL(k) Languages 

 
We have just offered heuristic rules for getting rid of some nondeterminism. 
 
We know that not all context-free languages are deterministic, so there are some languages for which these rules won't work. 
 
We define a grammar to be LL(k) if it is possible to decide what production to apply by looking ahead at most k symbols in the 
input string. 
 
Specifically, a grammar G is LL(1) iff, whenever  
A → α | β are two rules in G: 
1. For no terminal a do α and β derive strings beginning with a. 
2. At most one of α | β can derive ε. 
3. If β �* ε, then α does not derive any strings beginning with a terminal in FOLLOW(A), defined to be the set of terminals 

that can immediately follow A in some sentential form.  
 
We define a language to be LL(k) if there exists an LL(k) grammar for it. 
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Implementing an LL(1) Parser 
 
If a language L has an LL(1) grammar, then we can build a deterministic LL(1) parser for it.  Such a parser scans the input Left to 
right and builds a Leftmost derivation. 
 
The heart of an LL(1) parser is the parsing table, which tells it which production to apply at each step. 
For example, here is the parsing table for our revised grammar of arithmetic expressions without function calls: 

V\ΣΣΣΣ id + * ( ) $ 
E E→TE'   E→TE'   
E'  E'→+TE'   E'→ε E'→ε 
T T→FT'   T→FT'   
T'  T'→ε T'→*FT'  T'→ε T'→ε 
F F→id   F→(E)   

 
Given input id + id * id, the first few moves of this parser will be: 
    E    id + id * id$ 
E→TE'    TE'    id + id * id$  
T→FT'    FT'E'    id + id * id$ 
F→id    idT'E'    id + id * id$ 
    T'E'        + id * id$ 
T'→ε    E'        + id * id$ 

 
But What If We Need a Language That Isn't LL(1)? 

 
Example: 
 

ST → if C then ST else ST 
ST → if C then ST 

 
We can apply left factoring to yield: 
  ST → if C then ST S' 
  S' → else ST | ε 
 
Now we've procrastinated the decision.  But the language is still ambiguous.  What if the input is 
 
 if C1 then if C2 then ST1 else ST2 
 
Which bracketing (rule) should we choose? 
 
A common practice is to choose   S' → else ST 
 
We can force this if we create the parsing table by hand. 
 

Possible Solutions to the Nondeterminism Problem 
 
I. Modify the language 

A. Add a terminator $ 
II. Change the parsing algorithm 

A. Add one character look ahead 
B. Use a parsing table 
C. Tailor parsing table entries by hand 

III. Modify the grammar 
A. Left factor 
B. Get rid of left recursion 
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The Price We Pay 
 
Old Grammar 
[1] E → E + T 
[2] E → T 
 
[3] T → T * F 
[4] T → F 
 
[5] F → (E) 
[6] F → id  
[7] F → id(E) 

New Grammar 
E → TE' 
E' → +TE' 
E' → ε 
T → FT' 
T' → *FT' 
T' → ε 
F → (E) 
F → idA 
A → ε 
A → (E) 

input  = id + id + id  
 
    E 
 
   T      E' 
 
         F            T'    +  T    E' 
 
    id     A        ε     F  T'  + T    E' 
 
            ε     id  A ε    F        T'      ε 
 
       ε          id         A        ε 

 
 

Comparing Regular and Context-Free Languages 
 
Regular Languages 
 
• regular exprs. 

or 
• regular grammars 
• = DFSAs 
• recognize 
• minimize FSAs 

Context-Free Languages 
 
• context-free grammars 
 
 
• = NDPDAs 
• parse 
• find deterministic grammars 
• find efficient parsers 
 

 
 
 
 


