Turing Machines

Read K \& S 4.1.
Do Homework 17.

Grammars, Recursively Enumerable Languages, and Turing Machines

Can we come up with a new kind of automaton that has two properties:

- powerful enough to describe all computable things unlike FSMs and PDAs
- simple enough that we can reason formally about it like FSMs and PDAs unlike real computers

Turing Machines

At each step, the machine may:

- go to a new state, and

Finite State Control

- either
- write on the current square, or
$\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots \mathrm{~h}_{1}, \mathrm{~h}_{2}$
- move left or right

A Formal Definition

A Turing machine is a quintuple $(\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{H})$:
K is a finite set of states;
Σ is an alphabet, containing at least \square and \diamond, but not \rightarrow or \leftarrow;
$\mathrm{s} \in \mathrm{K}$ is the initial state;
$\mathrm{H} \subseteq \mathrm{K}$ is the set of halting states;
δ is a function from:
(K-H) $\quad \times \quad \Sigma$
to $\mathrm{K} \times$

$$
(\Sigma \cup\{\rightarrow, \leftarrow\})
$$

non-halting state \times input symbol

$$
\text { state } \quad \times
$$

such that
(a) if the input symbol is \diamond, the action is \rightarrow, and
(b) \diamond can never be written .

Notes on the Definition

1. The input tape is infinite to the right (and full of \square), but has a wall to the left. Some definitions allow infinite tape in both directions, but it doesn't matter.
2. δ is a function, not a relation. So this is a definition for deterministic Turing machines.
3. δ must be defined for all state, input pairs unless the state is a halt state.
4. Turing machines do not necessarily halt (unlike FSM's). Why? To halt, they must enter a halt state. Otherwise they loop.
5. Turing machines generate output so they can actually compute functions.

A Simple Example

A Turing Machine Odd Parity Machine:

Formalizing the Operation

A configuration of a Turing machine $\mathrm{M}=(\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{H})$ is a member of

| K | $\diamond \Sigma^{*} \times$ | $\left(\Sigma^{*}(\Sigma-\{\square\})\right) \cup \varepsilon$ |
| :---: | :--- | :--- | :--- |
| state | input up | input after |
| to scanned | | |
| | square | scanned square |

The input after the scanned square may be empty, but it may not end with a blank. We assume the entire tape to the right of the input is filled with blanks.

$$
\begin{equation*}
(\mathrm{q}, \diamond \mathrm{aab}, \mathrm{~b}) \quad=\quad(\mathrm{q}, \diamond \mathrm{a}, \underline{b} b) \tag{1}
\end{equation*}
$$

$$
(\mathrm{h}, \diamond \square \mathrm{aabb}, \varepsilon) \quad=\quad(\mathrm{h}, \Delta \square \mathrm{aabb}) \quad \text { a halting configuration }
$$

Yields

$\left.\left(\mathrm{q}_{1}, \mathrm{w}_{1} \underline{\mathrm{a}}_{1} \mathrm{u}_{1}\right)\right|_{\mathrm{M}}\left(\mathrm{q}_{2}, \mathrm{w}_{2} \mathrm{a}_{2} \underline{u}_{2}\right), \quad \mathrm{a}_{1}$ and $\mathrm{a}_{2} \in \Sigma, \quad$ iff $\quad \exists \mathrm{b} \in \Sigma \cup\{\leftarrow, \rightarrow\}, \delta\left(\mathrm{q}_{1}, \mathrm{a}_{1}\right)=\left(\mathrm{q}_{2}, \mathrm{~b}\right)$ and either:
(1) $b \in \Sigma, w_{1}=w_{2}, u_{1}=u_{2}$, and $a_{2}=b \quad$ (rewrite without moving the head)

$\Delta \square a a b b$

$\Delta \square a a \underline{a}$

Yields, Continued
(2) $\mathrm{b}=\leftarrow, \mathrm{w}_{1}=\mathrm{w}_{2} \mathrm{a}_{2}$, and either
(a) $u_{2}=a_{1} u_{1}$, if $a_{1} \neq \square$ or $u_{1} \neq \varepsilon$,

or
(b) $\mathrm{u}_{2}=\varepsilon$, if $\mathrm{a}_{1}=\square$ and $\mathrm{u}_{1}=\varepsilon$

If we scan left off the first square of the blank region, then drop that square from the configuration.
Yields, Continued
(3) $\mathrm{b}=\rightarrow, \mathrm{w}_{2}=\mathrm{w}_{1} \mathrm{a}_{1}$, and either
(a) $\mathrm{u}_{1}=\mathrm{a}_{2} \mathrm{u}_{2}$

\diamond aaab
or
(b) $\mathrm{u}_{1}=\mathrm{u}_{2}=\varepsilon$ and $\mathrm{a}_{2}=\square$

If we scan right onto the first square of the blank region, then a new blank appears in the configuration.

Yields, Continued

For any Turing machine M , let $\mid-\mathrm{m}^{*}$ be the reflexive, transitive closure of $\mid-\mathrm{m}$.
Configuration C_{1} yields configuration C_{2} if
$\mathrm{C}_{1} \mathrm{Fm}^{*} \mathrm{C}_{2}$.
A computation by M is a sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that С $_{0} \mid$-м С $_{1} \mid$-м С $_{2} \mid$ м $\ldots \mid$ м С $_{\text {п }}$.

We say that the computation is of length n or that it has n steps, and we write

$$
\mathrm{C}_{0} \mid-{ }^{n} \mathrm{C}_{\mathrm{n}}
$$

A Context-Free Example

M takes a tape of a's then b's, possibly with more a's, and adds b's as required to make the number of b's equal the number of a's.

$\mathrm{K}=\{0,1,2,3,4,5,6,7,8,9\}$
$\Sigma=\mathrm{a}, \mathrm{b}, \diamond, \square, 1,2$
$\mathrm{s}=0 \quad \mathrm{H}=\{9\} \quad \delta=$

An Example Computation

$\left.(0, \diamond$ ﹎aaab $)\right|_{-м}$
$\left.(1, \diamond \square$ aaab $)\right|_{-м}$
$\left.(2, \diamond \square \underline{1 a a b})\right|_{-м}$
$\left.(3, \diamond \square 1 \underline{a} a b)\right|_{-м}$
$(3, \diamond \square 1$ aab $) \mid-м$
$(3, \diamond \square 1 \mathrm{aab}) \mid-м$
$(4, \diamond \square 1$ аа 2$) \mid-м$

Notes on Programming

The machine has a strong procedural feel.
It's very common to have state pairs, in which the first writes on the tape and the second move. Some definitions allow both actions at once, and those machines will have fewer states.

There are common idioms, like scan left until you find a blank.
Even a very simple machine is a nuisance to write.

A Notation for Turing Machines

(1) Define some basic machines

- Symbol writing machines

For each $\mathrm{a} \in \Sigma-\{\diamond\}$, define M_{a}, written just $\mathrm{a},=(\{\mathrm{s}, \mathrm{h}\}, \Sigma, \delta, \mathrm{s},\{\mathrm{h}\})$, for each $b \in \Sigma-\{\diamond\}, \delta(s, b)=(h, a)$
$\delta(\mathrm{s}, \diamond)=(\mathrm{s}, \rightarrow)$
Example:
a writes an a

- Head moving machines

For each $\mathrm{a} \in\{\leftarrow, \rightarrow\}$, define M_{a}, written $\mathrm{R}(\rightarrow)$ and $\mathrm{L}(\leftarrow)$:

```
for each b \in \Sigma -{ {},\delta(s,b) = (h, a)
            \delta(},\diamond)=(\textrm{s},->
Examples:
```

R moves one square to the right
aR writes an a and then moves one square to the right.

A Notation for Turing Machines, Cont'd

(2) The rules for combining machines: as with FSMs

- Start in the start state of M_{1}.
- Compute until M_{1} reaches a halt state.
- Examine the tape and take the appropriate transition.
- Start in the start state of the next machine, etc.
- Halt if any component reaches a halt state and has no place to go.
- If any component fails to halt, then the entire machine may fail to halt.

Shorthands

More Useful Machines

An Example

Input: $\quad \Delta D w \quad w \in\{1\}^{*}$
Output: $\quad \Delta \underline{w^{3}}$

Input:
Output:
$\square \square w \square$

Example:

Computing with Turing Machines

Read K \& S 4.2.
Do Homework 18.

Turing Machines as Language Recognizers

Convention: We will write the input on the tape as:
$\Delta \square \mathrm{w} \square$, w contains no \square_{s}
The initial configuration of M will then be:
(s, $\left.\Delta \square_{\mathrm{w}} \mathrm{w}\right)$
A recognizing Turing machine M must have two halting states: y and n
Any configuration of M whose state is:
y is an accepting configuration
n is a rejecting configuration
Let Σ_{0}, the input alphabet, be a subset of $\Sigma_{\mathrm{M}^{-}}\{\square, \diamond\}$
Then M decides a language $\mathrm{L} \subseteq \Sigma_{0} *$ iff for any string
$\mathrm{w} \in \Sigma_{0} *_{i t}$ is true that:
if $w \in L$ then M accepts w, and
if $w \notin L$ then M rejects w.
A language L is recursive if there is a Turing machine M that decides it.

A Recognition Example

$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$
Example: \leqslant Daabbcc $\square \square \square \square \square \square \square \square$

Example: \forall ㅡaaccb $\square \square \square \square \square \square \square$

Another Recognition Example

$L=\left\{w c w: w \in\{a, b\}^{*}\right\}$

Example: \vee ַabbcabb $\square \square$

Example: Δ ㄱacabb $\square \square$

Do Turing Machines Stop?

FSMs

PDAs
Always halt after n steps, where n is the length of the input. At that point, they either accept or reject.

Turing machines Can do one of three things:
(1) Halt and accept
(2) Halt and reject
(3) Not halt

And now there is no algorithm to determine whether a given machine always halts.

Computing Functions

Let $\Sigma_{0} \subseteq \Sigma-\{\Delta, \square\}$ and let $\mathrm{w} \in \Sigma_{0} *$
Convention: We will write the input on the tape as:
Qubl
The initial configuration of M will then be:
$(\mathrm{s}, \stackrel{\square}{ } \mathrm{w})$
Define $\mathrm{M}(\mathrm{w})=\mathrm{y}$ iff:

- $\quad M$ halts if started in the input configuration,
- the tape of M when it halts is $\forall \square y \square$, and
- $\mathrm{y} \in \Sigma_{0} *$

Let f be any function from $\Sigma_{0} *$ to $\Sigma_{0} *$.
We say that M computes f if, for all $w \in \Sigma_{0}{ }^{*}, M(w)=f(w)$
A function f is recursive if there is a Turing machine M that computes it.
$f(w)=w w$

Input: $\forall \square w \square \square \square \square \square \square$
Output: $\stackrel{\square}{\square} \mathrm{ww}$
Define the copy machine C:
$\Delta \underline{\square Q} \square \square \square \square \rightarrow$
$\diamond \square w \square w \square$

Remember the S_{\leftarrow} machine:

L
Then the machine to compute f is just $\quad>\mathrm{CS} \mathrm{L}_{\lrcorner} \leftarrow$

Computing Numeric Functions

We say that a Turing machine M computes a function f from N^{k} to N provided that

$$
\operatorname{num}\left(\mathrm{M}\left(\mathrm{n}_{1} ; \mathrm{n}_{2} ; \ldots \mathrm{n}_{\mathrm{k}}\right)\right)=\mathrm{f}\left(\operatorname{num}\left(\mathrm{n}_{1}\right), \ldots \operatorname{num}\left(\mathrm{n}_{\mathrm{k}}\right)\right)
$$

Example: $\operatorname{Succ}(\mathrm{n})=\mathrm{n}+1$
We will represent n in binary. So $n \in 0 \cup 1\{0,1\}^{*}$
Input: $\Delta \underline{D n} \square \square \square \square \square \square$
Output: $\Delta \square \mathrm{n}+1 \square$
Output: $\triangle \underline{\square} 10000 \square$

Why Are We Working with Our Hands Tied Behind Our Backs?

Turing machines are more powerful than any of the other formalisms we have studied so far.
Turing machines are a lot harder to work with than all the real computers we have available.

Why bother?
The very simplicity that makes it hard to program Turing machines makes it possible to reason formally about what they can do. If we can, once, show that anything a real computer can do can be done (albeit clumsily) on a Turing machine, then we have a way to reason about what real computers can do.

Recursively Enumerable and Recursive Languages

Read K \& S 4.5.

Recursively Enumerable Languages

Let Σ_{0}, the input alphabet to a Turing machine M , be a subset of $\Sigma_{\mathrm{M}}-\{\square, \diamond\}$
Let $\mathrm{L} \subseteq \Sigma_{0}{ }^{*}$.
M semidecides L iff
for any string $\mathrm{w} \in \Sigma_{0} *$,

$\mathrm{w} \in \mathrm{L} \Rightarrow$	M halts on input w
$\mathrm{w} \notin \mathrm{L} \Rightarrow$	M does not halt on input w
	$\mathrm{M}(\mathrm{w})=\uparrow$

L is recursively enumerable iff there is a Turing machine that semidecides it.

Examples of Recursively Enumerable Languages

$\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \mathrm{w}\right.$ contains at least one a$\}$

$\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b},(,)\}^{*}: \mathrm{w}\right.$ contains at least one set of balanced parentheses $\}$

Recursively Enumerable Languages that Aren't Also Recursive

A Real Life Example:

$\mathrm{L}=\{\mathrm{w} \in\{$ friends $\}: \mathrm{w}$ will answer the message you've just sent out $\}$

Theoretical Examples

$\mathrm{L}=$ \{Turing machines that halt on a blank input tape \}
Theorems with valid proofs.

Why Are They Called Recursively Enumerable Languages?

Enumerate means list.

We say that Turing machine M enumerates the language L iff, for some fixed state q of M, $\mathrm{L}=\left\{\mathrm{w}:(\mathrm{s}, \Delta \underline{\square}) \mid-\mathrm{m}^{*}(\mathrm{q}, \Delta \square \mathrm{w})\right\}$

A language is Turing-enumerable iff there is a Turing machine that enumerates it.
Note that q is not a halting state. It merely signals that the current contents of the tape should be viewed as a member of L .

Recursively Enumerable and Turing Enumerable

Theorem: A language is recursively enumerable iff it is Turing-enumerable.
Proof that Turing-enumerable implies RE: Let M be the Turing machine that enumerates L . We convert M to a machine M ' that semidecides L:

1. Save input w.
2. Begin enumerating L. Each time an element of L is enumerated, compare it to w. If they match, accept.

The Other Way
Proof that RE implies Turing-enumerable:
If $\mathrm{L} \subseteq \Sigma^{*}$ is a recursively enumerable language, then there is a Turing machine M that semidecides L .
A procedure to enumerate all elements of L :
Enumerate all $w \in \Sigma^{*}$ lexicographically.

$$
\text { e.g., } \varepsilon, a, b, a a, a b, b a, b b, \ldots
$$

As each string w_{i} is enumerated:

1. Start up a copy of M with w_{i} as its input.
2. Execute one step of each M_{i} initiated so far, excluding only those that have previously halted.
3. Whenever an M_{i} halts, output w_{i}.
ε [1]
$\varepsilon[2] \quad$ a [1]
$\varepsilon[3] \quad$ a [2]
ε [4]
a [3]
[1]
[政
a [4]
b [2]
b [3]
$\begin{array}{ll}\text { aa } & {[1]} \\ \text { aa } & {[2]} \\ \text { aa } & {[3]}\end{array}$
ab [1]
ab [2] ba [1]

Every Recursive Language is Recursively Enumerable

If L is recursive, then there is a Turing machine that decides it.
From M, we can build a new Turing machine M^{\prime} that semidecides L:

1. Let n be the reject (and halt) state of M.
2. Then add to δ^{\prime}
$((\mathrm{n}, \mathrm{a}),(\mathrm{n}, \mathrm{a}))$ for all $\mathrm{a} \in \Sigma$

What about the other way around?
Not true. There are recursively enumerable languages that are not recursive.

The Recursive Languages Are Closed Under Complement

Proof: (by construction) If L is recursive, then there is a Turing machine M that decides L.
We construct a machine M^{\prime} to decide \bar{L} by taking M and swapping the roles of the two halting states y and n. M:

M^{\prime} :

This works because, by definition, M is

- deterministic
- complete

Are the Recursively Enumerable Languages Closed Under Complement?

M':

Lemma: There exists at least one language L that is recursively enumerable but not recursive.
Proof that M' doesn't exist: Suppose that the RE languages were closed under complement. Then if L is $\mathrm{RE}, \overline{\mathrm{L}}$ would be RE. If that were true, then \bar{L} would also be recursive because we could construct M to decide it:

1. Let T_{1} be the Turing machine that semidecides L .
2. Let T_{2} be the Turing machine that semidecides $\overline{\mathrm{L}}$.
3. Given a string w, fire up both T_{1} and T_{2} on w. Since any string in Σ^{*} must be in either L or $\overline{\mathrm{L}}$, one of the two machines will eventually halt. If it's T_{1}, accept; if it's T_{2}, reject.
But we know that there is at least one RE language that is not recursive. Contradiction.

Recursive and RE Languages

Theorem: A language is recursive iff both it and its complement are recursively enumerable.

Proof:

- L recursive implies L and $\neg \mathrm{L}$ are RE: Clearly L is RE . And, since the recursive languages are closed under complement, $\neg \mathrm{L}$ is recursive and thus also RE .
- $\quad L$ and $\neg L$ are $R E$ implies L recursive: Suppose L is semidecided by $M 1$ and $\neg L$ is semidecided by M2. We construct M to decide L by using two tapes and simultaneously executing M1 and M2. One (but not both) must eventually halt. If it's M1, we accept; if it's M2 we reject.

Lexicographic Enumeration

We say that M lexicographically enumerates L if M enumerates the elements of L in lexicographic order. A language L is lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it.

Example: $L=\left\{a^{n} b^{n} c^{n}\right\}$
Lexicographic enumeration:

Proof

Theorem: A language is recursive iff it is lexicographically Turing-enumerable.
Proof that recursive implies lexicographically Turing enumerable: Let M be a Turing machine that decides L. Then M^{\prime} lexicographically generates the strings in Σ^{*} and tests each using M. It outputs those that are accepted by M. Thus M' lexicographically enumerates L.

Proof, Continued

Proof that lexicographically Turing enumerable implies recursive: Let M be a Turing machine that lexicographically enumerates L. Then, on input w, M^{\prime} starts up M and waits until either M generates w (so M^{\prime} accepts), M generates a string that comes after w (so M^{\prime} rejects), or M halts (so M^{\prime} rejects). Thus M^{\prime} decides L .

Partially Recursive Functions

	Languages	Functions
Tm always halts	recursive	recursive
Tm halts if yes	recursively enumerable	$?$

Suppose we have a function that is not defined for all elements of its domain.
Example: $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}, \mathrm{f}(\mathrm{n})=\mathrm{n} / 2$
Partially Recursive Functions

One solution: Redefine the domain to be exactly those elements for which f is defined:

But what if we don't know? What if the domain is not a recursive set (but it is recursively enumerable)? Then we want to define the domain as some larger, recursive set and say that the function is partially recursive. There exists a Turing machine that halts if given an element of the domain but does not halt otherwise.
Semidecidable
Enumerable
Unrestricted grammar
Decision procedure
Lexicicographically enumerable
Complement is recursively enumer.
CF grammar
PDA
Closure
Closure

