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Turing Machines 
Read K & S 4.1. 
Do Homework 17. 
 

Grammars, Recursively Enumerable Languages, and Turing Machines 
 
                                           
                                
 
                   L 
 
 
 
  Unrestricted     
   Grammar                                                 Accepts 
 
 
 
                                               

 
 
 

Turing Machines 
 
Can we come up with a new kind of automaton that has two properties: 
• powerful enough to describe all computable things 
  unlike FSMs and PDAs 
• simple enough that we can reason formally about it 
  like FSMs and PDAs 
  unlike real computers 

Turing Machines 
 
 
  ❑ � ❑ a b b a ❑ ❑ ❑  
 
 
At each step, the machine may: 
• go to a new state, and      Finite State Control 
• either 

• write on the current square, or    s1, s2, … h1, h2 
• move left or right 

 
A Formal Definition 

A Turing machine is a quintuple (K, Σ, δ, s, H): 
 K is a finite set of states; 
 Σ is an alphabet, containing at least ❑ and �, but not → or ←; 
 s ∈  K is the initial state; 
 H ⊆  K is the set of halting states; 
 δ is a function from: 
          (K - H)        ×           Σ   to  K  ×   (Σ ∪  {→, ←}) 
  non-halting state ×    input symbol                state     ×                     action (write or move) 
  such that 
(a) if the input symbol is �, the action is →, and 
(b) � can never be written . 

Recursively 
Enumerable 
Language 

Turing 
Machine 
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Notes on the Definition 
 
1. The input tape is infinite to the right (and full of ❑), but has a wall to the left.  Some definitions allow infinite tape in both 

directions, but it doesn't matter. 
 
2. δ is a function, not a relation.  So this is a definition for deterministic Turing machines. 
 
3. δ must be defined for all state, input pairs unless the state is a halt state. 
 
4. Turing machines do not necessarily halt (unlike FSM's).  Why?   To halt, they must enter a halt state.  Otherwise they loop. 
 
5. Turing machines generate output so they can actually compute functions. 

 
A Simple Example 

 
A Turing Machine Odd Parity Machine: 
 
 ❑ � ❑ 0 1 1 0 ❑ ❑ ❑  
 
Σ = 0, 1, �, ❑ 
s =  
H =  
δ = 
 
 
 
 
 

Formalizing the Operation 
 
 
   � a a b b ❑ ❑ ❑    (1) 
 
 
   � ❑ a a b b ❑ ❑ ❑   (2) 
 
 
A configuration of a Turing machine  
  M = (K, Σ, δ, s, H) is a member of 
 
 K   ×  �Σ*   ×  (Σ*(Σ - {❑})) ∪  ε 
           state      input up   input after 
     to scanned  scanned square 
     square 
 
The input after the scanned square may be empty, but it may not end with a blank.  We assume the entire tape to the right of the 
input is filled with blanks. 
 
(1) (q, �aab, b) = (q, �aabb) 
(2) (h, �❑aabb, ε) = (h, �❑aabb)      a halting  configuration 
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Yields 
 
(q1, w1a1u1) |-M (q2, w2a2u2),    a1 and a2 ∈  Σ,    iff           ∃  b ∈  Σ ∪  {←, →}, δ(q1, a1) = (q2, b) and either: 
 
(1) b ∈  Σ, w1 = w2, u1 = u2, and a2 = b     (rewrite without moving the head) 
 
                          |                        w1                          |    a1          |    u1      |  
  � ❑ a a b b ❑ ❑ ❑  �❑aabb 
 
 
                          |                         w2                          |      a2       |     u2      | 
  � ❑ a a a b ❑ ❑ ❑  �❑aaab 
 

 
Yields, Continued 

 
(2) b = ←, w1 = w2a2, and either 
 (a) u2 = a1u1, if a1 ≠ ❑ or u1 ≠ ε,  
 
                         |                           w1                        |     a1     |     u1      | 
  � ❑ a a a b ❑ ❑ ❑     �❑aaab 
       
                         |                    w2                 |     a2     |           u2              | 
  � ❑ a a a b ❑ ❑ ❑     �❑aaab 
 
  
or (b) u2 = ε, if a1 = ❑ and u1 = ε 
                        |                       w1                                                          |    a1          |u1| 
  � ❑ a a a b ❑ ❑ ❑     �❑aaab❑ 
 
                        |                       w1                                            |     a1     |u1| 
  � ❑ a a a b ❑ ❑ ❑     �❑aaab 
 
 
If we scan left off the first square of the blank region, then drop that square from the configuration. 

 
Yields, Continued 

 
(3) b = →, w2 = w1a1, and either 
 (a) u1 = a2u2 

 
                         |                         w1                          |      a1    |      u1     | 
  � ❑ a a a b ❑ ❑ ❑      �❑aaab 
 
                         |                             w2                                     |      a2      |      u2    | 
  � ❑ a a a b ❑ ❑ ❑      �❑aaab 
 
 
or (b) u1 = u2 = ε and a2 = ❑ 
                         |                            w1                                      |      a1      |u1| 
  � ❑ a a a b ❑ ❑ ❑      �❑aaab 
 
                         |                             w2                                                   |      a2       |u2| 
  � ❑ a a a b ❑ ❑ ❑      �❑aaab❑ 
 
 
If we scan right onto the first square of the blank region, then a new blank appears in the configuration. 
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Yields, Continued 
 
For any Turing machine M, let |-M* be the reflexive, transitive closure of |-M. 
 
Configuration C1 yields configuration C2 if  
  C1  |-M*  C2. 
 
A computation by M is a sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that 
  C0 |-M  C1 |-M  C2 |-M … |-M  Cn. 
 
We say that the computation is of length n or that it has n steps, and we write 
  C0 |-M

n  Cn 
A Context-Free Example 

 
M takes a tape of a's then b's, possibly with more a's, and adds b's as required to make the number of b's equal the number of a's. 
 
  � ❑ a a a b             ❑         ❑         ❑  
 
 
K = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
Σ = a, b, �, ❑, 1, 2 
s =  0   H = {9}   δ = 
 
 0          a/1 
 
   ❑ /→ 
        a,1,2/→                                                        1,2/← 
        a/1           1/→   b/2   2/← 
 1   2   3   4   5 
 
                ❑/2       2/← 
  ❑/❑       6                 ❑/→ 
 
        
    1/a;2/b 
   7   8 
    ∀ /→ 
          ❑/❑ 
 
 
      9 

 
An Example Computation 

 
 
  � ❑ a a a   b           ❑         ❑          ❑  
 
 
 (0, �❑aaab) |-M  
 (1, �❑aaab) |-M  
 (2, �❑1aab) |-M  
 (3, �❑1aab) |-M  
 (3, �❑1aab) |-M  
 (3, �❑1aab) |-M  
 (4, �❑1aa2) |-M 

 ... 
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Notes on Programming 
 
The machine has a strong procedural feel. 
 
It's very common to have state pairs, in which the first writes on the tape and the second move.  Some definitions allow both 
actions at once, and those machines will have fewer states. 
 
There are common idioms, like scan left until you find a blank. 
 
Even a very simple machine is a nuisance to write. 
 

A Notation for Turing Machines 
 
(1) Define some basic machines 
 
• Symbol writing machines 
 For each a ∈  Σ - {�}, define Ma, written just a, = ({s, h}, Σ, δ, s, {h}), 
  for each b ∈  Σ - {�}, δ(s, b) = (h, a) 
          δ(s, �) = (s, →) 
   Example: 
    a writes an a 
 
• Head moving machines 
 For each a ∈  {←, →}, define Ma, written  R(→) and L(←): 
  for each b ∈  Σ - {�}, δ(s, b) = (h, a) 
            δ(s, �) = (s, →) 
   Examples: 
    R moves one square to the right 
    aR writes an a and then moves one square to the right. 

 
 

A Notation for Turing Machines, Cont'd 
 
(2) The rules for combining machines:  as with FSMs 
 
         >M1     a     M2 
           b       
 
           M3 
 
• Start in the start state of M1. 
• Compute until M1 reaches a halt state. 
• Examine the tape and take the appropriate transition. 
• Start in the start state of the next machine, etc. 
• Halt if any component reaches a halt state and has no place to go. 
• If any component fails to halt, then the entire machine may fail to halt. 
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Shorthands 
 
             a          
M1   M2  becomes  M1     a, b M2 
             b 
 
                
M1        all elems of Σ        M2  becomes  M1  M2 
        or 
        M1M2 
 
MM     becomes  M2 

 
                   
M1 all elems of Σ M2  becomes  M1    x ≠ a M2 
         except a 
       and x takes on the value of  the current square 
 
                          
M1   a, b  M2  becomes  M1    x = a, b M2 
 
       and x takes on the value of  the current square 
 
       M        x ? y M2 
 
       if x = y then take the transition 
 
 
 
e.g.,    >    x ≠ ❑        Rx  if the current square is not  blank, go right and copy it. 

 
 

Some Useful Machines 
 
   > R  ¬❑  find the first blank square to the right of the current square 
 
  R

❑
  

 
 
  > L ¬❑  find the first blank square to the left of the current square 
 
  L

❑
  

 
 
   > R   ❑  find the first nonblank square to the right of the current square 
 
  R¬ ❑

  
 
 
   > L  ❑  find the first nonblank square to the left of the current square 
 
  L¬ ❑
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More Useful Machines 
 
La   find the first occurrence of a to the left of the current square 
 
Ra,b   find the first occurrence of a or b to the right of the current square 
     
La,b   a M1 find the first occurrence of a or b to the left of the current square, then go to M1 if the detected 
b   character is a; go to M2 if the detected character is b   
       
M2        
 
Lx=a,b   find the first occurrence of a or b to the left of the current square and set x to the value found 
 
Lx=a,bRx   find the first occurrence of a or b to the left of the current square, set x to the value found, move one  
   square to the right, and write x (a or b) 

 
An Example 

Input:    �❑w    w ∈  {1}* 
Output:  �❑w3  
 
Example:            � ❑111❑❑❑❑❑❑❑❑❑❑❑❑❑  
 
 
 >R1,❑       1      #R

❑
#R#L

❑ 

     ❑  
 
   L     #          1 
     ❑ 
 
  H 

A Shifting Machine S←←←← 
Input:    ❑❑w❑     
Output:  ❑w❑  
 
Example:              ❑❑abba❑❑❑❑❑❑❑❑❑❑❑❑❑  
 
 
  > L

❑
    R    x ≠ ❑        ❑LxR  

 
                                          x=❑ 
 
             L 
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Computing with Turing Machines 
Read K & S 4.2. 
Do Homework 18. 

 
Turing Machines as Language Recognizers 

 
Convention:  We will write the input on the tape as: 
   �❑w❑ , w contains no ❑s 
The initial configuration of M will then be: 
   (s, �❑w) 
A recognizing Turing machine M must have two halting states:  y and n 
Any configuration of M whose state is: 
 y is an accepting configuration 
 n is a rejecting configuration 
Let Σ0, the input alphabet, be a subset of ΣM-{❑,�} 
Then M decides a language L ⊆  Σ0* iff for any string  
  w ∈  Σ0*it is true that: 
   if w ∈  L then M accepts w, and 
   if w ∉  L then M rejects w. 
A language L is recursive if there is a Turing machine M that decides it. 

 
 

A Recognition Example 
L = {anbncn : n ≥ 0} 
 
Example:  �❑aabbcc❑❑❑❑❑❑❑❑❑  
 
 
 
Example:  �❑aaccb❑❑❑❑❑❑❑❑❑  
 
 
 
         
          a’                             a, b’                        b, c’   
         >     R          a              a’ R           b           b’   R        c        c’   L

❑
  

    ❑, b’, c’            c, a’, c’, ❑                       
                           b,c           ❑, a, b’, a’ 
  b’,c’        R    a, b, c, a’        n 
              
             ❑  
   y 
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Another Recognition Example 
L = {wcw : w ∈  {a, b}*} 
 
Example:  �❑abbcabb❑❑❑  
 
 
 
Example:  �❑acabb❑❑❑  
 
 
 
 >R        x=a,b        ❑  Rc,❑  
                                            
               c       ❑              ❑                     c 
 
   R¬ #       ¬❑         n      ¬ (y ? x )     Ry=¬ #  
 
              ❑                y ? x 
 
                 y                                                 #L

❑
  

 
Do Turing Machines Stop? 

 
FSMs  Always halt after n steps, where n is the length of the input.  At that point, they either accept or reject. 
 
PDAs  Don't always halt, but there is an algorithm to convert any PDA into one that does halt. 
 
Turing machines  Can do one of three things: 
 (1) Halt and accept 
 (2) Halt and reject 
 (3) Not halt 
 
And now there is no algorithm to determine whether a given machine always halts. 
 

Computing Functions 
 
Let Σ0 ⊆  Σ - {�, ❑} and let w ∈  Σ0* 
 
Convention: We will write the input on the tape as: �❑w❑ 
 
The initial configuration of M will then be:  (s, �❑w) 
 
Define M(w) = y iff: 
• M halts if started in the input configuration,  
• the tape of M when it halts is �❑y❑, and 
• y ∈  Σ0* 
 
Let f be any function from Σ0* to Σ0*. 
 
We say that M computes f if, for all w ∈  Σ0*, M(w) = f(w) 
 
A function f is recursive if there is a Turing machine M that computes it. 

 



Lecture Notes 21                           Computing with Turing Machines   3 

Example of Computing a Function 
 
f(w) = ww 
 
Input: �❑w❑❑❑❑❑❑   Output: �❑ww❑ 
 
Define the copy machine C:    �❑w❑❑❑❑❑❑  �          �❑w❑w❑ 
 
 
 
 
 
 
Remember the S← machine: 
  �❑w❑w❑           �            �❑ww❑ 
 
 
  > L

❑
  R     x ≠ ❑       ❑ L x R  

 
                               x=❑ 
 
          L 
Then the machine to compute f is just      >C S L

❑←  
 

Computing Numeric Functions 
 
We say that a Turing machine M computes a function f from Nk to N provided that 
 
 num(M(n1;n2;…nk)) = f(num(n1), … num(nk)) 
 
Example:  Succ(n) = n + 1 
 
We will represent n in binary.  So n∈  0 ∪  1{0,1}* 
 
Input:  �❑n❑❑❑❑❑❑   Output: �❑n+1❑ 
            �❑1111❑❑❑❑   Output: �❑10000❑ 
 
 

Why Are We Working with Our Hands Tied Behind Our Backs? 
 
Turing machines are more powerful than any of the other formalisms we have studied so far.     
            
Turing machines are a lot harder to work with than all the real computers we have available.    
        
Why bother? 
 
The very simplicity that makes it hard to program Turing machines makes it possible to reason formally about what they can do.  
If we can, once, show that anything a real computer can do can be done (albeit clumsily) on a Turing machine, then we have a 
way to reason about what real computers can do. 
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Recursively Enumerable and Recursive Languages 
 
Read K & S 4.5. 

Recursively Enumerable Languages 
 
Let Σ0, the input alphabet to a Turing machine M, be a subset of ΣM - {❑, �} 
 
Let L ⊆  Σ0*. 
 
M semidecides L iff 
 for any string w ∈  Σ0*, 
  w ∈  L �  M halts on input w 
  w ∉  L  �  M does not halt on input w 
     M(w) = ↑  
 
L is recursively enumerable iff there is a Turing machine that semidecides it. 
 

Examples of Recursively Enumerable Languages 
 
L = {w ∈  {a, b}*   : w contains at least one a} 
 
                  ¬a  
  > R        
 
    ❑ b  b  b  b  b  b ❑ ❑ ❑ ❑ ❑                   
 
 
L = {w ∈  {a, b, (, ) }*   : w contains at least one set of balanced parentheses} 
         
              ❑ 
  > R),❑      )      ❑L(,❑  
                ❑ 
 
      L

❑
 

 
    ❑ b  b  b  b  b  b )  ❑ ❑ ❑ ❑ ❑                   
 
 

 
 
 

Recursively Enumerable Languages that Aren't Also Recursive 
 
A Real Life Example: 
 L = {w ∈  {friends}  : w will answer the message you've just sent out} 
 
Theoretical Examples 
 L = {Turing machines that halt on a blank input tape} 
 Theorems with valid proofs. 
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Why Are They Called Recursively Enumerable Languages? 
Enumerate means list. 
 
We say that Turing machine M enumerates the language L iff, for some fixed state q of M, 
 L = {w : (s, �❑) |-M* (q, �❑w)} 
 
                    q                                w 
 
 
 
 
 
 
A language is Turing-enumerable iff there is a Turing machine that enumerates it. 
 
Note that q is not a halting state.  It merely signals that the current contents of the tape should be viewed as a member of L. 
 

Recursively Enumerable and Turing Enumerable 
 
Theorem:  A language is recursively enumerable iff it is Turing-enumerable. 
Proof that Turing-enumerable implies RE:  Let M be the Turing machine that enumerates L.  We convert M to a machine M' that 
semidecides L: 
1. Save input w. 
2. Begin enumerating L.  Each time an element of L is enumerated, compare it to w.  If they match, accept. 
 
             w 
 
       
           =w?  halt 
      w3, w2, w1       
 

             M          M' 
 

 
The Other Way 

Proof that RE implies Turing-enumerable:  
If L ⊆  Σ* is a recursively enumerable language,  then there is a Turing machine M that semidecides L. 
A procedure to enumerate all elements of L: 
Enumerate all w ∈  Σ* lexicographically. 
 e.g., ε, a, b, aa, ab, ba, bb, … 
As each string wi is enumerated: 
1. Start up a copy of M with wi as its input. 
2. Execute one step of each Mi initiated so far, excluding only those that have previously halted. 
3. Whenever an Mi halts, output wi. 
 
ε [1]   
ε [2]  a   [1] 
ε [3]  a   [2]  b   [1] 
ε [4]  a   [3]  b   [2]  aa   [1] 
ε [5]  a   [4]  b   [3]  aa   [2]  ab   [1] 
ε [6]  a   [5]     aa   [3]  ab   [2]  ba   [1] 
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Every Recursive Language is Recursively Enumerable 
 
If L is recursive, then there is a Turing machine that decides it. 
 
From M, we can build a new Turing machine M' that semidecides L: 

1. Let n be the reject (and halt) state of M. 
2. Then add to δ' 

  ((n, a), (n, a)) for all a ∈  Σ 
 
 
   
 
             a/a 
 y   n     y    n     
 
 
What about the other way around? 
Not true.  There are recursively enumerable languages that are not recursive. 

 
The Recursive Languages Are Closed Under Complement 

 
Proof: (by construction) If L is recursive, then there is a Turing machine M that decides L. 
 
We construct a machine M' to decide L by taking M and swapping the roles of the two halting states y and n. 
M:        M': 
 
 
               
 
              
 y   n     n    y     
 
 
This works because, by definition, M is 
• deterministic 
• complete 

Are the Recursively Enumerable Languages Closed Under Complement? 
 
M:        M': 
 
               
 
 
  
 
   h          
                  
 
Lemma: There exists at least one language L that is recursively enumerable but not recursive. 
 
Proof that M' doesn't exist:  Suppose that the RE languages were closed under complement.  Then if L is RE, L would be RE.  If 
that were true, then L would also be recursive because we could construct M to decide it: 
1. Let T1 be the Turing machine that semidecides L. 
2. Let T2 be the Turing machine that semidecides L. 
3. Given a string w, fire up both T1 and T2 on w.  Since any string in Σ* must be in either L or L, one of the two machines will 

eventually halt.  If it's T1, accept; if it's T2, reject. 
But we know that there is at least one RE language that is not recursive.  Contradiction. 
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Recursive and RE Languages 
 
Theorem: A language is recursive iff both it and its complement are recursively enumerable. 
 
Proof: 
• L recursive implies L and ¬L are RE:  Clearly L is RE.  And, since the recursive languages are closed under complement, 

¬L is recursive and thus also RE. 
• L and ¬L are RE implies L recursive:  Suppose L is semidecided by M1 and ¬L is semidecided by M2. We construct M to 

decide L by using two tapes and simultaneously executing M1 and M2.  One (but not both) must eventually halt.  If it's M1, 
we accept; if it's M2 we reject. 

Lexicographic Enumeration 
 
We say that M lexicographically enumerates L if M enumerates the elements of L in lexicographic order.  A language L is 
lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it. 
 
Example:  L = {anbncn} 
 
 Lexicographic enumeration: 

Proof 
 

Theorem: A language is recursive iff it is lexicographically Turing-enumerable. 
 
Proof that recursive implies lexicographically Turing enumerable:  Let M be a Turing machine that decides L.  Then M' 
lexicographically generates the strings in Σ* and tests each using M.  It outputs those that are accepted by M.  Thus M' 
lexicographically enumerates L. 
 
          
 
                   
     Σ*3,  Σ*2,  Σ*1              ∈ L?             yes         Σ*k     
                   no 
 
     M 
 M'  
 
 

 
Proof, Continued 

 
Proof that lexicographically Turing enumerable implies recursive: Let M be a Turing machine that lexicographically enumerates 
L.  Then, on input w, M' starts up M and waits until either M generates w (so M' accepts), M generates a string that comes after w 
(so M' rejects), or M halts (so M' rejects).  Thus M' decides L. 
 
              w 
 
 
          
 
        = w?         yes           
            L3,  L2,  L1          
         > w?         no 
  M                            
         no more Lis?                        no 
   
  
     M' 
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Partially Recursive Functions 
 
 Languages Functions 
Tm always halts recursive recursive 
Tm halts if yes recursively 

enumerable 
           ? 

 
 
 
 
 
 
 
 
 
 
    domain     range 
 
 
Suppose we have a function that is not defined for all elements of its domain. 
 
Example:  f: N → N, f(n) = n/2 
 

Partially Recursive Functions 
 
 
 
 
 
 
 
 
 
 
    domain     range 
 
 
 
One solution:  Redefine the domain to be exactly those elements for which f is defined: 
 
 
 
 
              domain 
         range 
 
 
But what if we don't know?  What if the domain is not a recursive set (but it is recursively enumerable)?  Then we want to define 
the domain as some larger, recursive set and say that the function is partially recursive.  There exists a Turing machine that halts 
if given an element of the domain but does not halt otherwise. 
 



Lecture Notes 22                           Recursively Enumerable and Recursive Languages   6 

Language 
Summary 

 
 
 
         IN               OUT 
 
Semidecidable     Recursively 
Enumerable     Enumerable 
Unrestricted grammar 
 
 
 
Decision procedure      Recursive       Diagonalization 
Lexicicographically enumerable           Reduction 
Complement is recursively enumer. 
 
 
 
CF grammar          Context Free         Pumping 
PDA                Closure 
Closure 
 
 
 
Regular expression       Regular         Pumping 
FSM                Closure 
Closure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


