
Lecture Notes 25 Grammars and Turing Machines 1

Grammars and Turing Machines

Do Homework 20.

Grammars, Recursively Enumerable Languages, and Turing Machines

 L

 Unrestricted
 Grammar Accepts

Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple
 (V, Σ, R, S), where

• V is an alphabet,
• Σ (the set of terminals) is a subset of V,
• R (the set of rules) is a finite subset of

• (V* (V-Σ) V*) × V*,
context N context → result

• S (the start symbol) is an element of V - Σ.
We define derivations just as we did for context-free grammars.
The language generated by G is

 {w ∈ Σ* : S �G* w}
There is no notion of a derivation tree or rightmost/leftmost derivation for unrestricted grammars.

Unrestricted Grammars
Example: L = anbncn, n > 0

S → aBSc
S → aBc
Ba → aB
Bc → bc
Bb → bb

Another Example

L = {w ∈ {a, b, c}+ : number of a's, b's and c's is the same}
S → ABCS
S → ABC
AB → BA
BC → CB
AC → CA
BA → AB

CA → AC
CB → BC
A → a
B → b
C → c

Recursively
Enumerable
Language

Turing
Machine

Lecture Notes 25 Grammars and Turing Machines 2

A Strong Procedural Feel

Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we're in a
particular phase.

It's very common to have two main phases:
• Generate the right number of the various symbols.
• Move them around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammars and Turing Machines

Theorem: A language is generated by an unrestricted grammar if and only if it is recursively enumerable (i.e., it is semidecided
by some Turing machine M).

Proof:
Only if (grammar → TM): by construction of a nondeterministic Turing machine.

If (TM → grammar): by construction of a grammar that mimics backward computations of M.

Proof that Grammar →→→→ Turing Machine

Given a grammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

 � ❑ a b a ❑ ❑
 � 0 1 0 0 0 0 0 ❑ ❑
 � a S T a b ❑
 0 1 0 0 0 0 0

For each nondeterministic "incarnation":
• Tape 1 holds the input.
• Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side
of the rule. Or it chooses to check whether tape 2 equals tape 1. If any such machine succeeds, we accept. Otherwise, we keep
looking.

Lecture Notes 25 Grammars and Turing Machines 3

Proof that Turing Machine →→→→ Grammar

Suppose that M semidecides a language L (it halts when fed strings in L and loops otherwise). Then we can build M' that halts in
the configuration (h, �❑).

We will define G so that it simulates M' backwards.
We will represent the configuration (q, �uaw) as
 >uaqw<

M'
 goes from

 � ❑ a b b a ❑ ❑ ❑

 � ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Then, if w ∈ L, we require that our grammar produce a derivation of the form
S �G >❑h< (produces final state of M')
 �G* >❑abq< (some intermediate state of M')
 �G* >❑sw< (the initial state of M')
 �G w< (via a special rule to clean up >❑s)
 �G w (via a special rule to clean up <)

The Rules of G

S → >❑h< (the halting configuration)

>❑s → ε (clean-up rules to be applied at the end)
< → ε

Rules that correspond to δ:

If δ(q, a) = (p, b) : bp → aq

If δ(q, a) = (p, →) : abp → aqb ∀ b ∈ Σ
 a❑p< → aq<

If δ(q, a) = (p, ←), a ≠ ❑ pa → aq

If δ(q, ❑) = (p, ←) p❑b → ❑qb ∀ b ∈ Σ
 p< → ❑q<

Lecture Notes 25 Grammars and Turing Machines 4

A REALLY Simple Example
M' = (K, {a}, δ, s, {h}), where
 δ ={ ((s, ❑), (q, →)), 1
 ((q, a), (q, →)), 2
 ((q, ❑), (t, ←)), 3
 ((t, a), (p, ❑)), 4
 ((t, ❑), (h, ❑)), 5
 ((p, ❑), (t, ←)) 6

L = a*

 S →>❑h<
 >❑s → ε
 < → ε

(1) ❑❑q→ ❑s❑
 ❑aq → ❑sa
 ❑❑q< → ❑s<
(2) a❑q → aq❑
 aaq → aqa
 a❑q< → aq<

(3) t❑❑ → ❑q❑
 t❑a → ❑qa
 t< → ❑q<
(4) ❑p → at
(5) ❑h → ❑t
(6) t❑❑ → ❑p❑
 t❑a → ❑pa
 t< → ❑p<

Working It Out

 S →>❑h< 1
 >❑s → ε 2
 < → ε 3

(1) ❑❑q→ ❑s❑ 4
 ❑aq → ❑sa 5
 ❑❑q< → ❑s< 6
(2) a❑q → aq❑ 7
 aaq → aqa 8
 a❑q< → aq< 9

(3) t❑❑ → ❑q❑ 10
 t❑a → ❑qa 11
 t< → ❑q< 12
(4) ❑p → at 13
(5) ❑h → ❑t 14
(6) t❑❑ → ❑p❑ 15
 t❑a → ❑pa 16
 t< → ❑p< 17

>❑saa< 1
>❑aqa< 2
>❑aaq< 2
>❑aa❑q< 3
>❑aat< 4
>❑a❑p< 6
>❑at< 4
>❑❑p< 6
>❑t< 5
>❑h<

S � >❑h< 1
 � >❑t< 14
 � >❑❑p< 17
 � >❑at< 13
 � >❑a❑p< 17
 � >❑aat< 13
 � >❑aa❑q< 12
 � >❑aaq< 9
 � >❑aqa< 8
 � >❑saa< 5
 � aa< 2
 � aa 3

Lecture Notes 25 Grammars and Turing Machines 5

An Alternative Proof

An alternative is to build a grammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols
to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the
machine.

The first (generate) part of G:
Creates all strings over Σ* of the form
 w = � � ❑ ❑ Qs a1 a1 a2 a2 a3 a3 ❑ ❑ …

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
 � � ❑ ❑ a 1 b 2 c c b 4 Q3 a 3

 Examples of rules:
 b b Q 4 → b 4 Q 4 (rewrite b as 4)
 b 4 Q 3 → Q 3 b 4 (move left)

The third (cleanup) part of G erases the junk if M ever reaches h.

 Example rule:
 # h a 1 → a # h (sweep # h to the right erasing the working “tape”)

Computing with Grammars

We say that G computes f if, for all w, v ∈Σ *,
 SwS �G* v iff v = f(w)
Example:
 S1S �G* 11
 S11S �G* 111 f(x) = succ(x)
A function f is called grammatically computable iff there is a grammar G that computes it.

Theorem: A function f is recursive iff it is grammatically computable.
In other words, if a Turing machine can do it, so can a grammar.

Example of Computing with a Grammar

f(x) = 2x, where x is an integer represented in unary

G = ({S, 1}, {1}, R, S), where R =
 S1 → 11S
 SS → ε

Example:

 Input: S111S

 Output:

Lecture Notes 25 Grammars and Turing Machines 6

More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?
Primitive Recursive Functions

Define a set of basic functions:
• zerok (n1, n2, … nk) = 0
• identityk,j (n1, n2, … nk) = nj
• successor(n) = n + 1
Combining functions:
• Composition of g with h1, h2, … hk is
 g(h1(), h2(), … hk())
• Primitive recursion of f in terms of g and h:
 f(n1,n2,…nk, 0) = g(n1,n2,…nk)
 f(n1,n2,…nk,m+1) = h(n1,n2,…nk, m, f(n1, n2,…nk,m))

Example: plus(n, 0) = n
 plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivially true: all primitive recursive functions are Turing computable.
What about the other way: Not all Turing computable functions are primitive recursive.

Proof:
Lexicographically enumerate the unary primitive recursive functions, f0, f1, f2, f3, ….
Define g(n) = fn(n) + 1.
G is clearly computable, but it is not on the list. Suppose it were fm for some m. Then
 fm(m) = fm(m) + 1, which is absurd.

 0 1 2 3 4
f0
f1
f2
f3 27
f4

Suppose g is f3. Then g(3) = 27 + 1 = 28. Contradiction.

Functions that Aren't Primitive Recursive

Example: Ackermann's function: A(0, y) = y + 1
 A(x + 1, 0) = A(x, 1)
 A(x + 1, y + 1) = A(x, A(x + 1, y))

 0 1 2 3 4
0 1 2 3 4 5
1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125
4 13 65533 265536-3 * 2 3265536

− # 2 32
265536

− %

* 19,729 digits
105940 digits
% 10105939

 digits

1017 seconds since big bang
1087 protons and neutrons
10-23 light seconds = width
 of proton or neutron

Thus writing digits at the speed of light on all protons and neutrons in the universe (all lined up) starting at the big bang would
have produced 10127 digits.

Lecture Notes 25 Grammars and Turing Machines 7

Recursive Functions

A function is µµµµ-recursive if it can be obtained from the basic functions using the operations of:
• Composition,
• Recursive definition, and
• Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is a function f of k arguments defined as:
f(n1,n2,…nk) = the least m such at g(n1,n2,…nk,m)=1, if such an m exists,
 0 otherwise

A function g is minimalizable iff for every n1,n2,…nk, there is an m such that g(n1,n2,…nk,m)=1.

Theorem: A function is µ-recursive iff it is recursive (i.e., computable by a Turing machine).

Partial Recursive Functions
Consider the following function f:
 f(n) = 1 if TM(n) halts on a blank tape
 0 otherwise

The domain of f is the natural numbers. Is f recursive?

 domain range

Theorem: There are uncountably many partially recursive functions (but only countably many Turing machines).

Functions and Machines

Partial Recursive

Functions

Recursive
Functions

Primitive Recursive
Functions

Turing Machines

Lecture Notes 25 Grammars and Turing Machines 8

Languages and Machines

Recursively Enumerable

Languages

Recursive
Languages

Context-Free
Languages

Deterministic
Context-Free
Languages

Regular
Languages

FSMs

DPDAs

NDPDAs

Turing Machines

Is There Anything In Between CFGs and Unrestricted Grammars?

Answer: yes, various things have been proposed.

Context-Sensitive Grammars and Languages:

A grammar G is context sensitive if all productions are of the form
 x → y
 and |x| ≤ |y|

In other words, there are no length-reducing rules.

A language is context sensitive if there exists a context-sensitive grammar for it.

Examples:
 L = {anbncn, n > 0}
 L = {w ∈ {a, b, c}+ : number of a's, b's and c's is the same}

Lecture Notes 25 Grammars and Turing Machines 9

Context-Sensitive Languages are Recursive

The basic idea: To decide if a string w is in L, start generating strings systematically, shortest first. If you generate w, accept. If
you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k
times the length of the input.

Example: L = {anbncn : n ≥ 0}

 �❑aabbcc❑❑❑❑❑❑❑❑❑

 a’ a,b’ b,c’
 > R a a’ R b b’ R c c’ L

❑

 ❑,b’,c’ c,a’,c’,❑
 b,c ❑,a,b’,a’
 b’,c’ R a,b,c,a’ n

 ❑
 y

Context-Sensitive Languages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar
G. We build a machine B with a two track tape. On input w, B keeps w on the first tape. On the second tape, it
nondeterministically constructs all derivations of G. The key is that as soon as any derivation becomes longer than |w| we stop,
since we know it can never get any shorter and thus match w. There is also a proof that from any lba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.

Lecture Notes 25 Grammars and Turing Machines 10

Languages and Machines

Recursively Enumerable
Languages

Recursive
Languages

Context-Sensitive

Languages

Context-Free
Languages

Deterministic
Context-Free
Languages

Regular

Languages

FSMs

DPDAs

NDPDAs

Linear Bounded Automata

Turing Machines

Lecture Notes 25 Grammars and Turing Machines 11

The Chomsky Hierarchy

Recursively Enumerable
Languages

Context-Sensitive

Languages

Context-Free
Languages

Regular
 Type 0 Type 1 Type 2 (Type 3)

Languages
FSMs

PDAs

Linear Bounded Automata

Turing Machines

