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Grammars and Turing Machines 
 
Do Homework 20. 
 

Grammars, Recursively Enumerable Languages, and Turing Machines 
 
                                           
                              L                       
 
 
 
 
 
        Unrestricted     
        Grammar                                          Accepts 
 
 
 
                                               

 
 
 
 

Unrestricted Grammars 
 
An unrestricted, or Type 0, or phrase structure grammar G is a quadruple 
 (V, Σ, R, S), where 
 
• V is an alphabet, 
• Σ (the set of terminals) is a subset of V, 
• R (the set of rules) is a finite subset of  

• (V*            (V-Σ)            V*)       ×           V*, 
context N context  →      result 

• S (the start symbol) is an element of V - Σ. 
We define derivations just as we did for context-free grammars. 
The language generated by G is 
 
 {w ∈  Σ* : S �G* w} 
There is no notion of a derivation tree or rightmost/leftmost derivation for unrestricted grammars. 
 

Unrestricted Grammars 
Example: L = anbncn, n > 0 

S → aBSc 
S → aBc 
Ba → aB 
Bc → bc 
Bb → bb 

Another Example 
 
L = {w ∈  {a, b, c}+ : number of a's, b's and c's is the same} 
S → ABCS 
S → ABC 
AB → BA 
BC → CB 
AC → CA 
BA → AB 

CA → AC 
CB → BC 
A → a 
B → b 
C → c

Recursively 
Enumerable 
Language 

Turing 
Machine 
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A Strong Procedural Feel 

 
Unrestricted grammars have a procedural feel that is absent from restricted grammars.   
 
Derivations often proceed in phases.  We make sure that the phases work properly by using nonterminals as flags that we're in a 
particular phase. 
 
It's very common to have two main phases: 
• Generate the right number of the various symbols. 
• Move them around to get them in the right order. 
 
No surprise: unrestricted grammars are general computing devices. 

 
Equivalence of Unrestricted Grammars and Turing Machines 

 
Theorem:  A language is generated by an unrestricted grammar if and only if it is recursively enumerable (i.e., it is semidecided 
by some Turing machine M). 
 
Proof:  
Only if (grammar → TM): by construction of a nondeterministic Turing machine. 
 
If (TM → grammar): by construction of a grammar that mimics backward computations of M. 
 

Proof that Grammar →→→→ Turing Machine 
 
Given a grammar G, produce a Turing machine M that semidecides L(G). 
 
M will be nondeterministic and will use two tapes: 
 
   � ❑ a b a ❑ ❑  
  � 0 1 0 0 0 0  0  ❑  ❑ 
   � a S T a b ❑ 
   0 1 0 0 0 0 0 
 
For each nondeterministic "incarnation": 
• Tape 1 holds the input. 
• Tape 2 holds the current state of a proposed derivation. 
 
At each step, M nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side 
of the rule.  Or it chooses to check whether tape 2 equals tape 1.  If any such machine succeeds, we accept.  Otherwise, we keep 
looking. 
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Proof that Turing Machine →→→→ Grammar 
 
Suppose that M semidecides a language L (it halts when fed strings in L and loops otherwise).  Then we can build M' that halts in 
the configuration (h, �❑). 
 
We will define G so that it simulates M' backwards.   
We will represent the configuration (q, �uaw) as 
  >uaqw< 
 
M' 
 goes from 
 
  � ❑ a b b a ❑ ❑ ❑  
 
 
 
  � ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑  
 
 
Then, if w ∈  L, we require that our grammar produce a derivation of the form 
S �G  >❑h<       (produces final state of M') 
   �G*  >❑abq< (some intermediate state of M') 
   �G*  >❑sw<  (the initial state of M') 
   �G  w<           (via a special rule to clean up >❑s) 
   �G  w             (via a special rule to clean up <) 

 
The Rules of G 

S → >❑h<     (the halting configuration) 
 
>❑s → ε        (clean-up rules to be applied at the end) 
< → ε 
 
Rules that correspond to δ: 
 
If δ(q, a) = (p, b) :  bp → aq 
 
If δ(q, a) = (p, →) :  abp → aqb    ∀ b ∈  Σ 
    a❑p< → aq< 
 
If δ(q, a) = (p, ←), a ≠ ❑   pa → aq 
 
If δ(q, ❑) = (p, ←)  p❑b → ❑qb    ∀ b ∈  Σ 
    p< → ❑q< 
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A REALLY Simple Example 
M' = (K, {a}, δ, s, {h}), where 
    δ ={ ((s, ❑), (q, →)),  1 
 ((q, a),  (q, →)),  2 
 ((q, ❑), (t, ←)),  3 
 ((t, a),  (p, ❑)),  4 
 ((t, ❑), (h, ❑)),  5 
 ((p, ❑), (t, ←))  6 
 
L = a* 
 
 S →>❑h< 
 >❑s → ε 
 < → ε 
 
(1) ❑❑q→ ❑s❑ 
 ❑aq → ❑sa 
 ❑❑q< → ❑s< 
(2)  a❑q → aq❑ 
 aaq → aqa 
 a❑q< → aq< 

(3) t❑❑ → ❑q❑ 
 t❑a → ❑qa 
 t< → ❑q< 
(4)  ❑p → at 
(5)  ❑h → ❑t 
(6)  t❑❑ → ❑p❑ 
 t❑a → ❑pa 
 t< → ❑p< 

Working It Out 
 
 S →>❑h<  1 
 >❑s → ε  2 
 < → ε   3 
 
(1) ❑❑q→ ❑s❑  4 
 ❑aq → ❑sa  5 
 ❑❑q< → ❑s<  6 
(2)  a❑q → aq❑  7 
 aaq → aqa  8 
 a❑q< → aq<  9 

(3) t❑❑ → ❑q❑  10 
 t❑a → ❑qa  11 
 t< → ❑q<  12 
(4)  ❑p → at   13 
(5)  ❑h → ❑t  14 
(6)  t❑❑ → ❑p❑  15 
 t❑a → ❑pa  16 
 t< → ❑p<  17 

 
>❑saa<  1 
>❑aqa<  2 
>❑aaq<  2 
>❑aa❑q< 3 
>❑aat<  4 
>❑a❑p< 6 
>❑at<  4 
>❑❑p<  6 
>❑t<  5 
>❑h< 
 

S  � >❑h< 1 
 � >❑t<  14 
 � >❑❑p< 17 
 � >❑at< 13 
 � >❑a❑p< 17 
 � >❑aat< 13 
 � >❑aa❑q< 12 
 � >❑aaq< 9 
 � >❑aqa< 8 
 � >❑saa< 5 
 � aa<  2 
 � aa  3 
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An Alternative Proof 
 
An alternative is to build a grammar G that simulates the forward operation of a Turing machine M.  It uses alternating symbols 
to represent two interleaved tapes.  One tape remembers the starting string, the other “working” tape simulates the run of  the 
machine. 
 
The first (generate) part of G: 
Creates all strings over Σ* of the form 
  w = � � ❑ ❑ Qs a1 a1 a2 a2 a3 a3 ❑ ❑ … 
 
The second (test) part of G simulates the execution of M on a particular string w.  An example of a partially derived string: 
   � � ❑ ❑ a 1 b 2 c c b 4 Q3 a 3  
 
 Examples of rules: 
  b b Q 4 → b 4 Q 4  (rewrite b as 4) 
    b 4 Q 3 → Q 3 b 4  (move left) 
 
The third (cleanup) part of G erases the junk if M ever reaches h. 
 
 Example rule: 
  # h a 1 → a # h       (sweep # h to the right erasing the working “tape”) 
 

 
 
 

Computing with Grammars 
 
We say that G computes f if, for all w, v ∈Σ *, 
 SwS �G* v   iff v = f(w) 
Example: 
 S1S  �G* 11  
 S11S  �G* 111  f(x) = succ(x) 
A function f is called grammatically computable iff there is a grammar G that computes it. 
 
Theorem:  A function f is recursive iff it is grammatically computable. 
In other words, if a Turing machine can do it, so can a grammar. 

 
Example of Computing with a Grammar 

 
f(x) = 2x, where x is an integer represented in unary 
 
G = ({S, 1}, {1}, R, S), where R = 
 S1 → 11S 
 SS → ε 
 
Example: 
 
 Input:       S111S 
 
 
 Output: 
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More on Functions:  Why Have We Been Using Recursive as a Synonym for Computable?   
Primitive Recursive Functions 

 
Define a set of basic functions: 
• zerok (n1, n2, … nk) = 0 
• identityk,j (n1, n2, … nk) = nj 
• successor(n) = n + 1 
Combining functions: 
• Composition of g with h1, h2, … hk is 
 g(h1(   ), h2(   ), … hk(   )) 
• Primitive recursion of f in terms of g and h: 
 f(n1,n2,…nk,     0) = g(n1,n2,…nk) 
 f(n1,n2,…nk,m+1) = h(n1,n2,…nk, m, f(n1, n2,…nk,m)) 
 
Example: plus(n, 0) = n 
  plus(n, m+1) = succ(plus(n, m)) 

 
Primitive Recursive Functions and Computability 

 
Trivially true:  all primitive recursive functions are Turing computable. 
What about the other way:  Not all Turing computable functions are primitive recursive. 
 
Proof:   
Lexicographically enumerate the unary primitive recursive functions, f0, f1, f2, f3, …. 
Define g(n) = fn(n) + 1. 
G is clearly computable, but it is not on the list.  Suppose it were fm for some m.  Then  
  fm(m) = fm(m) + 1, which is absurd. 
 

 0 1 2 3 4 
f0      
f1      
f2      
f3    27  
f4      

 
Suppose g is f3.  Then g(3) = 27 + 1 = 28.  Contradiction. 

Functions that Aren't Primitive Recursive 
 
Example: Ackermann's function:  A(0, y) = y + 1 
      A(x + 1, 0) = A(x, 1) 
      A(x + 1, y + 1) = A(x, A(x + 1, y)) 
 

 0 1 2 3 4 
0 1 2 3 4 5 
1 2 3 4 5 6 

2 3 5 7 9 11 

3 5 13 29 61 125 
4 13 65533  265536-3      * 2 3265536

−      # 2 32
265536

−      % 
 
*  19,729  digits 
#  105940    digits 
% 10105939

 digits 

1017 seconds since big bang 
1087 protons and neutrons 
10-23 light seconds = width  
 of proton or neutron

Thus writing digits at the speed of light on all protons and neutrons in the universe (all lined up) starting at the big bang would 
have produced 10127 digits. 
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Recursive Functions 
 
A function is µµµµ-recursive if it can be obtained from the basic functions using the operations of: 
• Composition, 
• Recursive definition, and 
• Minimalization of minimalizable functions: 
 
The minimalization of g (of k + 1 arguments) is a function f of k arguments defined as: 
f(n1,n2,…nk) =  the least m such at g(n1,n2,…nk,m)=1,  if such an m exists, 
  0      otherwise 
 
A function g is minimalizable iff for every n1,n2,…nk, there is an m such that g(n1,n2,…nk,m)=1. 
 
Theorem:  A function is µ-recursive iff it is recursive (i.e., computable by a Turing machine). 
 

Partial Recursive Functions 
Consider the following function f: 
      f(n) = 1 if TM(n) halts on a blank tape 
                 0 otherwise 
 
The domain of f is the natural numbers.  Is f recursive? 
 
 
 
 
 
 
 
 
 
    domain     range 
 
 
Theorem:  There are uncountably many partially recursive functions (but only countably many Turing machines). 
 

Functions and Machines 
 

 
Partial Recursive  

Functions 
 

Recursive 
Functions 

 
 
 

Primitive Recursive 
Functions 

 
 
 
 
 
 
 

Turing Machines 
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Languages and Machines 
 

 
Recursively Enumerable  

Languages 
 

Recursive  
Languages 

 
Context-Free 
Languages 

 
Deterministic 
Context-Free  
Languages 

 
 

Regular 
Languages 

 
FSMs 

 
 

DPDAs 
 
 

NDPDAs 
 
 
 
 

Turing Machines 
 
 
 

Is There Anything In Between CFGs and Unrestricted Grammars? 
 
Answer: yes, various things have been proposed. 
 
Context-Sensitive Grammars and Languages: 
 
A grammar G is context sensitive if all productions are of the form  
 x → y 
 and |x| ≤ |y| 
 
In other words, there are no length-reducing rules. 
 
A language is context sensitive if there exists a context-sensitive grammar for it. 
 
Examples:  
 L = {anbncn, n > 0} 
 L = {w ∈  {a, b, c}+ : number of a's, b's and c's is the same} 
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Context-Sensitive Languages are Recursive 
 
The basic idea:  To decide if a string w is in L, start generating strings systematically, shortest first.  If you generate w, accept.  If 
you get to strings that are longer than w, reject. 
 
Linear Bounded Automata 
 
A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k 
times the length of the input. 
 
Example:   L = {anbncn : n ≥ 0} 
 
  �❑aabbcc❑❑❑❑❑❑❑❑❑  
 
 
         
          a’                             a,b’                         b,c’   
         >     R          a              a’   R         b           b’    R        c        c’  L

❑
  

      ❑,b’,c’                  c,a’,c’,❑                       
                           b,c           ❑,a,b’,a’ 
  b’,c’        R    a,b,c,a’            n 
              
             ❑  
   y 
 

Context-Sensitive Languages and Linear Bounded Automata 
 
Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata. 
 
Proof: (sketch)  We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar 
G.  We build a machine B with a two track tape.  On input w, B keeps w on the first tape.  On the second tape, it 
nondeterministically constructs all derivations of G.  The key is that as soon as any derivation becomes longer than |w| we stop, 
since we know it can never get any shorter and thus match w.  There is also a proof that from any lba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars. 
 
Theorem: There exist recursive languages that are not context sensitive. 
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Languages and Machines 
 
 
 

Recursively Enumerable  
Languages 

 
Recursive  
Languages 

 
Context-Sensitive 

Languages 
 

Context-Free 
Languages 

 
Deterministic  
Context-Free 
Languages 

 
Regular 

Languages 
 

FSMs 
 
 

DPDAs 
 

NDPDAs 
 

Linear Bounded Automata 
 
 
 
 

Turing Machines 
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The Chomsky Hierarchy 
 
 

 
 

Recursively Enumerable  
Languages 

 
Context-Sensitive 

Languages 
 

Context-Free 
Languages 

 
 

Regular 
       Type 0     Type 1    Type 2        (Type 3) 

Languages 
FSMs 

 
 

PDAs 
 

Linear Bounded Automata 
 
 
 

Turing Machines 
 
 

 
 


