
Lecture Notes 27 Complexity Theory   1 

Introduction to Complexity Theory 
 
Read K & S Chapter 6. 
 
 
Most computational problems you will face your life are solvable (decidable).  We have yet to address whether a problem is 
“easy” or “hard”.  Complexity theory tries to answer this question. 
 
Recall that a computational problem can be recast as a language recognition problem.  
 
Some “easy” problems: 

�� Pattern matching 
�� Parsing 
�� Database operations (select, join, etc.) 
�� Sorting 

 
Some “hard” problems: 

�� Traveling salesman problem 
�� Boolean satisfiability 
�� Knapsack problem 
�� Optimal flight scheduling 

 
“Hard” problems usually involve the examination of a large search space. 
 

Big-O Notation 
 

�� Gives a quick-and-dirty measure of function size 
�� Used for time and space metrics 
 

A function f(n) is O(g(n)) whenever there exists a constant c, such that |f(n)| ≤ c⋅|g(n)| for all n ≥ 0.   
 
(We are usually most interested in the “smallest” and “simplest” function, g.) 
 
Examples: 

 2n3 + 3n2⋅log(n) + 75n2 + 7n + 2000  is O(n3) 
 75⋅2n + 200n5 + 10000  is O(2n) 
 

A function f(n) is polynomial if f(n) is O(p(n)) for some polynomial function p. 
 
If a function f(n) is not polynomial, it is considered to be exponential, whether or not it is O of some exponential function 

 (e.g. n log n). 
 
In the above two examples, the first is polynomial and the second is exponential. 

 
Comparison of Time Complexities 

 
Speed of various time complexities for different values of n, taken to be a measure of problem size.  (Assumes 1 step per 
microsecond.)  

f(n)\n 10 20 30 40 50 60 
n .00001 sec. .00002 sec. .00003 sec. .00004 sec. .00005 sec. .00006 sec. 
n2 .0001 sec. .0004 sec. .0009 sec. .0016 sec. .0025 sec. .0036 sec. 
n3 .001 sec. .008 sec. .027 sec. .064 sec. .125 sec. .216 sec. 
n5 .1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2 min. 13.0 min. 
2n .001 sec. 1.0 sec. 17.9 min. 12.7 days 35.7 yr. 366 cent. 
3n .059 sec. 58 min. 6.5 yr. 3855 cent. 2x108 cent. 1.3x1013 cent. 

 
Faster computers don’t really help.  Even taking into account Moore’s Law, algorithms with exponential time complexity are 
considered intractable.  ∴ Polynomial time complexities are strongly desired. 



Lecture Notes 27 Complexity Theory   2 

Polynomial Land 
 

If f1(n) and f2(n) are polynomials, then so are: 
�� f1(n) + f2(n) 
�� f1(n) ⋅ f2(n) 
�� f1(f2(n)) 
 

This means that we can sequence and compose polynomial-time algorithms with the resulting algorithms remaining polynomial-
time. 

Computational Model 
 

For formally describing the time (and space) complexities of algorithms, we will use our old friend, the deciding TM (decision 
procedure). 

 
There are two parts: 

�� The problem to be solved must be translated into an equivalent language recognition problem. 
�� A TM to solve the language recognition problem takes an encoded instance of the problem (of size n symbols) as input 

and decides the instance in at most TM(n) steps. 
 

We will classify the time complexity of an algorithm (TM) to solve it by its big-O bound on TM(n). 
 

We are most interested in polynomial time complexity algorithms for various types of problems. 
 

Encoding a Problem 
 
Traveling Salesman Problem:  Given a set of cities and the distances between them, what is the minimum distance tour a 
salesman can make that covers all cities and returns him to his starting city? 
 
Stated as a decision question over graphs:  Given a graph G = (V, E), a positive distance function for each edge d: E→N+, and a 
bound B, is there a circuit that covers all V where ΣΣΣΣd(e) ≤ B?  (Here a minimization problem was turned into a bound problem.) 
 
A possible encoding the problem: 

�� Give |V| as an integer. 
�� Give B as an integer. 
�� Enumerate all (v1, v2, d) as a list of triplets of integers (this gives both E and d). 
�� All integers are expressed as Boolean numbers. 
�� Separate these entries with commas. 

 
Note that the sizes of most “reasonable” problem encodings are polynomially related. 

 
What about Turing Machine Extensions? 

 
Most TM extensions are can be simulated by a standard TM in a time polynomially related to the time of the extended machine. 

 
�� k-tape TM can be simulated in O(T2(n)) 
�� Random Access Machine can be simulated in O(T3(n)) 

 
(Real programming languages can be polynomially related to the RAM.) 

 
BUT…  The nondeterminism TM extension is different. 
 
A nondeterministic TM can be simulated by a standard TM in O(2p(n)) for some polynomial p(n).   
Some faster simulation method might be possible, but we don’t know it. 
 
Recall that a nondeterministic TM can use a “guess and test” approach, which is computationally efficient at the expense of 
many parallel instances. 



Lecture Notes 27 Complexity Theory   3 

The Class P 
 

P = { L : there is a polynomial-time deterministic TM, M that decides L } 
 
Roughly speaking, P is the class of problems that can be solved by deterministic algorithms in a time that is polynomially related 
to the size of the respective problem instance. 
 
The way the problem is encoded or the computational abilities of the machine carrying out the algorithm are not very important. 
 
Example:  Given an integer n, is there a positive integer m, such that n = 4m? 
 
Problems in P are considered tractable or “easy”. 
 

The Class NP 
 

NP = { L: there is a polynomial time nondeterministic TM, M that decides L } 
 
Roughly speaking, NP is the class of problems that can be solved by nondeterministic algorithms in a time that is polynomially 
related to the size of the respective problem instance. 
 
Many problems in NP are considered “intractable” or “hard”. 
 
Examples: 

�� Traveling salesman problem:  Given a graph G = (V, E), a positive distance function for each edge d: E→N+, and a 
bound B, is there a circuit that covers all V where ΣΣΣΣd(e) ≤ B? 

�� Subgraph isomorphism problem:  Given two graphs G1 and G2, does G1 contain a subgraph isomorphic to G2? 
 

The Relationship of P and NP 
 

      
        
 
          
 
 
 
 
 
 
 

 
 
 
 

We’re considering only solvable (decidable) problems. 
 
Clearly P ⊆  NP. 
 
P is closed under complement. 
 
NP probably isn’t closed under complement.  Why? 
 
Whether P = NP is considered computer science’s greatest unsolved problem. 

Recursive

NP

P



Lecture Notes 27 Complexity Theory   4 

Why NP is so Interesting 
 
�� To date, nearly all decidable problems with polynomial bounds on the size of the solution are in this class. 
 
�� Most NP problems have simple nondeterministic solutions. 

 
�� The hardest problems in NP have exponential deterministic time complexities. 

 
�� Nondeterminism doesn’t influence decidability, so maybe it shouldn’t have a big impact on complexity. 

 
�� Showing that P = NP would dramatically change the computational power of our algorithms. 

 
Stephen Cook’s Contribution (1971) 

 
�� Emphasized the importance of polynomial time reducibility. 

 
�� Pointed out the importance of NP. 

 
�� Showed that the Boolean Satisfiability (SAT) problem has the property that every other NP problem can be 

polynomially reduced to it.  Thus, SAT can be considered the hardest problem in NP. 
 

�� Suggested that other NP problems may also be among the “hardest problems in NP”. 
 

This “hardest problems in NP” class is called the class of “NP-complete” problems. 
 
Further, if any of these NP-complete problems can be solved in deterministic polynomial time, they all can and, by implication,  
P = NP. 
 
Nearly all of complexity theory relies on the assumption that P ≠ NP. 

 
Polynomial Time Reducibility 

 
A language L1 is polynomial time reducible to L2 if there is a polynomial-time recursive function τ such that ∀ x ∈  L1 iff  τ(x) ∈  
L2. 
 
If L1 is polynomial time reducible to L2, we say L1 reduces to L2 (“polynomial time” is assumed) and we write it as L1 ∝  L2. 
 
Lemma:  If L1 ∝  L2, then (L2 ∈  P) � (L1 ∈  P).  And conversely, (L1 ∉  P) � (L2 ∉  P). 
 
Lemma:  If L1 ∝  L2 and L2 ∝  L3 then L1 ∝  L3. 
 
L1 and L2 are polynomially equivalent whenever both L1 ∝  L2 and L2 ∝  L1. 
 
Polynomially equivalent languages form an equivalence class.  The partitions of this equivalence class are related by the partial 
order ∝ . 
P is the “least” element in this partial order. 
 
What is the “maximal” element in the partial order? 

 



Lecture Notes 27 Complexity Theory   5 

The Class NP-Complete 
 

A language L is NP-complete if L ∈  NP and for all other languages L’ ∈  NP, L’ ∝  L. 
 
NP-Complete problems are the “hardest” problems in NP. 
 
Lemma:  If L1 and L2 belong to NP, L1 is NP-complete and L1 ∝  L2, then L2 is NP-complete. 
 
Thus to prove a language L2 is NP-complete, you must do the following: 

1.   Show that L2 ∈  NP. 
2.   Select a known NP-complete language L1. 
3.   Construct a reduction τ from L1 to L2. 
4.   Show that τ is polynomial-time function. 

 
 
 
 
 
 
 
 

How do we get started?  Is there a language that is NP-complete? 
 

Boolean Satisfiability (SAT) 
 

Given a set of Boolean variables U = {u1, u2, …, um} and a Boolean expression in conjunctive normal form (conjunctions of 
clauses—disjunctions of variables or their negatives), is there a truth assignment to U that makes the Boolean expression true 
(satisfies the expression)? 
 
Note:  All Boolean expressions can be converted to conjunctive normal form. 
Example:  (x1∨  ¬ x2 ∨  x3) ∧  (¬x3 ∨  x4 ∨  ¬ x2) 
 
Cook’s Theorem:  SAT is NP-complete. 

1. Clearly SAT ∈  NP. 
2. The proof constructs a complex Boolean expression that satisfied exactly when a NDTM accepts an input string x 

where |w| = n.  Because the NDTM is in NP, its running time is O(p(n)).  The number of variables is polynomially 
related to p(n). 

 
SAT is NP-complete because SAT ∈∈∈∈  NP and for all other languages L’ ∈∈∈∈  NP, L’ ∝∝∝∝  SAT. 

 
Reduction Roadmap 

 
 
 
 
 
 
 
 
 
 
 
The early NP-complete reductions took this structure.  Each phrase represents a problem.  The arrow represents a reduction from 
one problem to another. 
 
Today, thousands of diverse problems have been shown to be NP-complete. 
 
Let’s now look at these problems. 
 

τ M2

n

y

M1 

w τ(w) 

SAT 

3SAT 

3DM VC

PARTITION HC CLIQUE 



Lecture Notes 27 Complexity Theory   6 

3SAT (3-satisfiability) 
 

Boolean satisfiability where each clause has exactly 3 terms. 
 

3DM (3-Dimensional Matching) 
 
Consider a set M ⊆  X × Y × Z of disjoint sets, X, Y, & Z, such that |X| = |Y| = |Z| = q.  Does there exist a matching, a subset 
M’⊆  M such that |M’| = q and M’ partitions X, Y, and Z? 
 
This is a generalization of the marriage problem, which has two sets men & women and a relation describing acceptable 
marriages.  Is there a pairing that marries everyone acceptably? 
 
The marriage problem is in P, but this “3-sex version” of the problem is NP-complete. 

 
PARTITION 

 
Given a set A and a positive integer size, s(a) ∈  N+, for each element, a ∈  A.  Is there a subset A’ ⊆  A such that  

ΣΣΣΣ s(a) = ΣΣΣΣ s(a)  ? 

             a∈ A’      a∈ A-A’ 
 

VC (Vertex Cover) 
 
Given a graph G = (V, E) and an integer K, such that 0 < K ≤ |V|, is there a vertex cover of size K or less for G, that is, a subset 
V’ ⊆  V such that |V’| ≤ K and for each edge, (u, v) ∈  E, at least one of u and v belongs to V’? 

 
CLIQUE 

 
Given a graph G = (V, E) and an integer J, such that  
0 < J ≤ |V|, does G contain a clique of size J or more, that is a subset V’ ⊆  V such that |V’| ≥ J and every two vertices in V’ are 
joined by an edge in E? 
 

HC (Hamiltononian Circuit) 
 
Given a graph G = (V, E), does there exist a Hamiltonian circuit, that is an ordering <v1, v2, …, vn> of all V such that 
 (v|V|, v1) ∈  E and (vi, vi+1) ∈  E for all i, 1 ≤ i < |V|? 
 

Traveling Salesman Prob. is NP-complete 
 
Given a graph G = (V, E), a positive distance function for each edge d: E→N+, and a bound B, is there a circuit that covers all V 
where ΣΣΣΣd(e) ≤ B? 
 
To prove a language TSP is NP-complete, you must do the following: 

1. Show that TSP ∈  NP. 
2. Select a known NP-complete language L1. 
3. Construct a reduction τ from L1 to TSP. 
4. Show that τ is polynomial-time function. 

 
TSP ∈∈∈∈  NP:  Guess a set of roads.  Verify that the roads form a tour that hits all cities.  Answer “yes” if the guess is a tour and the 
sum of the distances is ≤ B. 
 
Reduction from HC:  Answer the Hamiltonian circuit question on G = (V, E) by constructing a complete graph where “roads” 
have distance 1 if the edge is in E and 2 otherwise.  Pose the TSP problem, is there a tour of length ≤ |V|? 



Lecture Notes 27 Complexity Theory   7 

Notes on NP-complete Proofs 
 
The more NP-complete problems are known, the easier it is to find a NP-complete problem to reduce from. 
 
Most reductions are somewhat complex. 
 
It is sufficient to show that a restricted version of the problem is NP-complete. 
 

More Theory 
 
NP has a rich structure that includes more than just P and NP-complete.  This structure is studied in later courses on the theory of 
computation. 
 
The set of recursive problems outside of NP (and including NP-complete) are called NP-hard.  There is a proof technique to 
show that such problems are at least as hard as NP-complete problems. 
 
Space complexity addresses how much tape does a TM use in deciding a language.  There is a rich set of theories surrounding 
space complexity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dealing with NP-completeness 
 
You will likely run into NP-complete problems in your career.  For example, most optimization problems are NP-complete. 
 
Some techniques for dealing with intractable problems: 

�� Recognize when there is a tractable special case of the general problem. 
�� Use other techniques to limit the search space. 
�� For optimization problems, seek a near-optimal solution. 

 
The field of linear optimization springs out of the latter approach.  Some linear optimization solutions can be proven to be “near” 
optimal. 
 
A branch of complexity theory deals with solving problems within some error bound or probability. 
 
For more:  Read Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and David S. 
Johnson, 1979. 

NP-hard 

NP

P

NP-complete 
(part of NP-hard) 

Recursive


