1. Homework

CS 341 Homework 1
Basic Techniques

1. What are these sets? Write them using braces, commas, numerals, ... (for infinite sets), and [J only.
(@ ({21,35 0{3,1})n{3,57}
(b) U{{3},{3, 5}, N{{5, 7}, {7, 9}}}
(© ({1,2,5 -{57,9})0(5,7,9 -{1,2,5})
(d) ol7.8, 9 - 7.9
(e) 2°
(f) {x: Oy O N wherex = y3}
(9) {x : x isan integer and x* = 2}

2. Prove each of the following:
@AOBNC)=(AOB)Nn(AOC)
b)An(BOC)=(AnB)O(ANnC
(An(AOB)=A
(dAOANB)=A
©A-BnC=(A-B)O(A-0O)

3. Write each of the following explicitly:
(@) {1} x{1,2} x{1,2,3}
(b) O x {1, 2}
(c) 2% x{1,2}

4. LetR={(a b), (a c), (c,d), (a a), (b, a)}. What isR ° R, the composition of R with itself? What isR™, the
inverseof R? IsR, R ° R, or R afunction?

5. What is the cardinality of each of the following sets? Justify your answer.
(@ S=N-{2,3,4}
(b) S={0, {0}}
(c) S=otabd
(d)S={ab,c} x{1,2, 3,4}
(e9S={ab,...,z} xN

6. Consider the chart of example relationsin Section 3.2. For thefirst six, give an example that proves that the
relation is missing each of the properties that the chart claimsit ismissing. For example, show that M other-of
is not reflexive, symmetric, or transitive.

7.Let A, B betwo sets. If 2* = 25, must A = B? Prove your answer.

8. For each of the following sets, state whether or not it isa partition of {0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10}.
(@ {{0}, {1}, {2}, {3}, {4} . {5}. {6}, {7}, {8} {9}, {10}}
(b) {0, {1}.{2}, {3}, {4}, {5}, {6}, {7}, {8, {9}, {10}
©{{1,2},{3,4}.,{56},{7, 8, {9 10}}
(d){{1,2,{2,3},{3,4},{4,5}.{56},{6,7},{7, 8, {8, 9} {9, 10}}

9. For each of the following relations, state whether it isa partia order (that is not also total), atotal order, or
neither. Justify your answer.

(a) DivisibleBy, defined on the natural numbers. (x, y) U DivisibleBy iff x isevenly divisible by y. So, for
example, (9, 3) [DivisibleBy but (9, 4) [DivisibleBy.

Homework 1 Basic Techniques 1

(b) LessThanOrEqual defined on ordered pairs of natural numbers. (a, b) < (x,y) iffa<xor (a=x and
b<y). For example, (1,2) < (2,1) and (1,2) < (1,3).
(c) Therelation defined by the following boolean matrix:

1 1
1)1
1)1
1 1

10. Arethe following sets closed under the following operations? If not, what are the respective closures?
(a) The odd integers under multiplication.
(b) The positive integers under division.
(c) The negative integers under subtraction.
(d) The negative integers under multiplication.
(e) The odd length strings under concatenation.

11. What is the reflexive transitive closure R* of the relation
R={(a b), (a c), (a d), (d, ¢), (d, €)} Draw adirected graph representing R*.

12. For each of the following relations R, over some domain D, compute the reflexive, symmetric, transitive
closure R'. Try to think of asimple descriptive name for the new relation R'. Since R’ must be an equivalence
relation, describe the partition that R induces on D.

(a) Let D bethe set of 50 statesin the US. Lixy, xRy iff x shares aboundary withy.

(b) Let D be the natural numbers. LIxy, xRy iff y = x+3.

(c) Let D be the set of strings containing no symbol except a. [Ixy, xRy iff y = xa. (i.e., if y equals x
concatenated with a).

13. Consider an infinite rectangular grid (like an infinite sheet of graph paper). Let S be the set of intersection
pointson the grid. Let each point in S be represented as apair of (x,y) coordinates where adjacent points differ
in one coordinate by exactly 1 and coordinates increase (asis standard) as you move up and to the right.

(a) Let R bethefollowing relation on S: [I(X1,y1)(X2,Y2), (X1,y1)R(X2,y2) iff Xo= x;+1 and y,=y;+1. Let R’ be
the reflexive, symmetric, transitive closure of R. Describe in English the partition P that R' induceson S. What
isthe cardinality of P?

(b) Let R bethe following relation on S: LI(X1,Y1)(X2,Y2), (X1,Y1)R(X2,y2) iff (Xo= X3+1 and yo,=y;+1) or (Xo= X1~
landy,=y,+1). Let R' bethereflexive, symmetric, transitive closure of R. Describe in English the partition P
that R’ induceson S. What is the cardinality of P?

(c) Let R bethe following relation on S: L1(X1,y1)(X2,Y2), (X1,Y1)R(X2,Y2) iff (X2,y2) is reachable from (x1,y1) by
moving two squares in any one of the four directions and then one square in a perpendicular direction. Let R’
be the reflexive, symmetric, transitive closure of R. Describe in English the partition P that R’ induceson S.
What is the cardinality of P?

14. Isthe transitive closure of the symmetric closure of a binary relation necessarily reflexive? Proveit or give
acounterexample.

15. Give an example of abinary relation that is not reflexive but has atransitive closure that is reflexive.

16. For each of the following functions, state whether or not it is (i) one-to-one, (ii) onto, and (iii) idempotent.
Justify your answers.
(@) +: Px P - P, where Pisthe set of positive integers, and
+(a, b) = a+ b (Inother words, simply addition defined on the positive integers)
(b) X : B xB - B,whereB isthe set { True, False}

Homework 1 Basic Techniques 2

X(&a b) =the exclusive or of aand b

17. Consider the following set manipulation problems:
(@ LetS={ab}. LetT={b,c}.Listtheelementsof P, defined as
P=2°n2",
(b) LetZbethesetofintegers. LetS={x0Z: [y OZandx=2y}. Let T={x0Z: [y 0Zandx=2%.
Let W=S-—T. Describe W in English. List any five consecutive elementsof W. Let X =T —S. What is X?

Solutions

1. (@ {3 /5
(b) {3,5 7}
(o {1,2,7,9
(d) {8}.{7,8},{8,9.,{7,8 9
(e {00}
(f) {0,1,4,9,25,36...} (the perfect squares)
() O (sincethe squareroot of 2 isnot an integer)

2@ AOBNC) =BnCUA commutativity
=(BOA)n (COA) distributivity
=(AOB)n(AOC) commutativity

(b) An(BOC) =(BOC)NA commutativity
=(BnA)O(CNnA) distributivity
=(AnB)O(ANnC) commutativity

(0 An(AOB) =(AOB)nA commutativity
=A absorption

3.(a) {(1L11),(L12),(113),(1.21), (1,22, (1,2,3)}
(b) O
(¢ {0102, (1.1, (1.2, (2,1, ({2, 2, (12, 1), ({12, 2)}

4. R°R={(a a), (a d), (a b), (b, b), (b, c), (b, a), (a c)}
Rinverse={(b, a), (c, @), (d, ¢), (& a), (a b)}
Noneof R, R° Ror R inverseisafunction.

5 (@& S={0,1,5,6,7,...}. Shasthesame number of elementsas N. Why? Because thereisabijection
between Sand N: f: S — N, wheref(0) =0, f(1) =1, Ox =5, f(X) =x- 3. S0 || = L.

(b) 2.

(c) S=allsubsetsof {a b,c}. SoS={0,{a}, {b},{c},{a b}, {a c},{b,c},{a b c}}. So[5=8. We
could also simply have used the fact that the cardinality of the power set of afinite set of cardinality c
is2.

d) sS={(a1l).(a2),(a3),(a4),(b1),(b2),(b?3)(b4),(c1),(c2),(c3)(c4} Sol§=12. Or
we could have used the fact that, for finite sets, |A x B|=|A|* |B|.

e S={(a0),(®&1),...,(b0),(b,1),..} Clearly Scontainsan infinite number of elements. But are there
the same number of elementsin Sasin N, or are there more (26 times more, to be precise)? The
answer isthat there are the same number. |S|= J,. To provethis, we need abijection from Sto N. We
can define this bijection as an enumeration of the elements of S:

(& 0), (b, 0),(c,0),... (Firstenumerate all 26 elements of S that have O as their second element)

Homework 1 Basic Techniques 3

(& 1), (b, 1),(c,1),... (Nextenumerateall 26 elementsof Sthat have 1 astheir second element)
and so forth.

6. Mother-of: Not reflexive: Eveisnot the mother of Eve (in fact, no oneis her own mother).

Not symmetric: mother-of (Eve, Cain), but not Mother-of (Cain, Eve).

Not transitive: Each person has only one mother, so if Mother-of(x, y) and Mother-of(y, z),
the only way to have Mother-of(x, z) would be if x and y are the same person, but we know
that that's not possible since Mother-of(x, y) and no one can be the mother of herself).

Would-recognize-picture-of:
Not symmetric: W-r-p-o(Elaine, Bill Clinton), but not W-r-p-o (Bill Clinton, Elaine)
Not transitive: W r-p-o(Elaine, Bill Clinton) and W r-p-o(Bill Clinton, Bill's mom) but not
W-r-p-o(Elaine, Bill's mom)
Has-ever-been-married-to: ~ Not reflexive: No oneis married to him or herself.
Not transitive: H-e-b-m-t(Dave, Sue) and H-e-b-m-t(Sue, Jeff) but not
H-e-b-m-t(Dave, Jeff)
Ancestor-of: Not reflexive: not Ancestor-of (Eve, Eve) (in fact, no oneistheir own ancestor).

Not symmetric: Ancestor-of(Eve, Cain) but not Ancestor-of(Cain, Eve)

Hangs-out-with: Not transitive: Hangs-out-with(Bill, Monica) and Hangs-out-with(Monica, Linda Tripp),
but not Hangs-out-with(Bill, Linda Tripp).
L ess-than-or-equal-to: Not symmetric: 1< 2, but not 2 < 1.

7. Yes, if 2 = 2° then A must equal B. Supposeit didn't. Then thereis some element x that isin one set but
not the other. Call theset x isin A. Then 2* must contain {x}, which must not bein 2°, sincex 0 B. This
would mean that 2* # 2°, which contradicts our premise.

8.(a vyes
(b) no, since no element of a partition can be empty.
(c) no,0ismissing
(d) no, since, each element of the original set S must appear in only one element of a partition of S.

9. (a) DivisibleByisapartia order. [Ix (X, x) [DivisibleBy, so DivisibleBy isreflexive. For x to be
DivisibleBy y, x must be greater than or equal toy. So the only way for both (X, y) and (y, X) to bein
DivisibleBy isfor x and y to be equal. Thus DivisibleBy is antisymmetric. Andif x isDivisibleByyandy is
DivisibleBy z, then x is DivisibleBy z. So DivisibleBy istransitive. But DivisibleBy is not atotal order. For
example neither (2, 3) nor (3, 2) isinit.

(b) LessThanOrEqual defined on ordered pairsisatotal order. Thisiseasy to show by relying on the fact
that < for the natural numbersisatotal order.

(c) Thisoneisnot apartial order at all because, although it is reflexive and antisymmetric, it is not
transitive. For example, it includes (4, 1) and (1, 3), but not (4, 3).

10. (a) The odd integers are closed under multiplication. Every odd integer can be expressed as 2n+1 for some
value of n O N. So the product of any two odd integers can be written as (2n+1)(2m+1) for some values of n
and m. Multiplying this out, we get 4(n+m) +2n + 2m +1, which we can rewrite as 2(2(n+m) + n + m) +1,
which must be odd.

(b) The positive integers are not closed under division. To show that a set is not closed under an operation, it
is sufficient to give one counterexample. 1/2 is not an integer. The closure of the positive integers under
division isthe positive rationals.

(c) The negative integers are not closed under subtraction. -2 - (-4) = 2. The closure of the negative numbers
under subtraction is the integers.

(d) The negative integers are not closed under multiplication. -2* -2 = 4. The closure of the negative
numbers under multiplication is the nonzero integers. Remember that the closure is the smallest set that

Homework 1 Basic Techniques 4

contains al the necessary elements. Sinceit isnot possible to derive zero by multiplying two negative
numbers, it must not be in the closure set.

(e) The odd length strings are not closed under concatenation. "a" ||"b" = "ab", which isof length 2. The
closure isthe set of strings of length = 2. Note that strings of length 1 are not included. Why?

11I.R*=RO{(x,x):xO{a b, c,d e} O{(a e}

12. (a) The easiest way to start to solve a problem like thisis to start writing down the elements of R’ and see if
apattern emerges. So we start with the elements of R: {(TX, LA), (LA, TX), (TX, NM), (NM, TX), (LA, Ark),
(Ark, LA), (LA Miss), (Miss, LA) ...}. Toconstruct R', wefirst add all elements of the form (x, x), so we add
(TX,TX), and so forth. Then we add the elements required to establish transitivity:
(NM, TX), (TX, LA) = (NM, TX)
(TX, LA), (LA, Ark) = (TX, Ark)
(NM, TX), (TX, Ark) = (NM, Ark), and so forth.
If we continue this process, we will seethat the reflexive, symmetric, transitive closure R’ relates all states
except Alaska and Hawaii to each other and each of them only to themselves. So R' can be described as
relating two statesif it's possible to drive from one to the other without leaving the country. The partition is:
[Alaskal
[Hawaii]
[all other 48 states)

(b) R includes, for example {(0, 3), (3, 6), (6, 9), (9, 12) ...}. When we compute the transitive closure, we
add, among other things{ (0, 6), (0, 9), (0,12)}. Now try this starting with (1,4) and (2, 5). It's clear that [IX,y,
XR'y iff x =y (mod 3). In other words, two numbers are related iff they have the same remainder mod 3. The
partition is:

[0,3,6,9,12...]
[1,4,7,10,13...]
[2,5,8,11,14 ...]
(c) R relates all strings composed solely of a sto each other. So the partitionis

[€, a aa, aoa, aaa, ...]

13. (a) Think of two points being related viaR if you can get to the second one by starting at the first and
moving up one square and right one square. When we add transitivity, we gain the ability to move diagonally
by two squares, or three, or whatever. So Pisan infinite set. Each element of P consists of the set of points
that fall on an infinite diagonal line running from lower |eft to upper right.

(b) Now we can more upward on either diagonal. And we can move up and right followed by up and left,
and so forth. The one thing we can’t do is move directly up or down or right or left exactly one square. So take
any given point. To visualize the pointsto which it isrelated under R’, imagine a black and white chess board
where the squares correspond to points on our grid. Each point isrelated to al other points of the same color.
Thusthe cardinality of Pis 2.

(c) Now every point isrelated to every other point. The cardinality of Pis 1.

14. Y ou might think that for all relations R on some domain D, the transitive closure of the symmetric closure
of R (call it TC(SC(R))) must be reflexive because for any two elements x, y I D such that (x, y) O R, welll
have (x, y), (Y, z) O SC(R) and therefore (x, x), (y, y) U TC(SC(R)). Thisisall true, but does not prove that for
al zOD, (z,2) O TC(SC(R)). Why not? Suppose thereisaz [1 D such that thereisno y [0 D for which (y, 2)
ORor(z,y) OR. (If youlook at the graph of R, zis an isolated vertex with no edgesin or out.) Then (z, z) [
TC(SC(R)). Sotheanswer isno, with R =[] on domain {a} asasimple counterexample: TC(SC(R)) = [, yet
it should contain (a, a) if it were reflexive.

15.R={(a b), (b, @} ondomain {a, b} doesthetrick easily.

Homework 1 Basic Techniques 5

16. (a) (i) +isnotoneto-one. For example+(1, 3) =+(2, 2) = 4.
(ii) +isnotonto. Thereare no two positive integers that sumto 1.
(iii) + isnot idempotent. +(1, 1) # 1.
(b) (i) X isnot one-to-one. For example True X True = False X False = False.
(if) X isonto. Proof: True X True=False. True X False=True. In genera, when the domainisa
finite set, it's easy to show that afunction is onto: just show one way to derive each element.
(iii) X isnot idempotent. True X True = False.

17. (a) P={0O{b}}

(b) Sisthe set of even numbers. T isthe set powersof 2. W isthe set of even numbers that are not powers
of 2. SoW={....-6,-4,-2,0, 6, 10, 12, 14, 18, ...}. X isthe set of numbers that are powers of 2 but are not
even. There' sonly oneelement of X. X ={1}.

Homework 1 Basic Techniques 6

CS 341 Homework 2
Strings and L anguages

lLe>={ab}. LetlL;={x0O>*: [x|<4}. Let L, ={aa, aaa, aaaa}. Listthe elementsin each of the
following languages L :

(a) L;=L, 0L,

(b) L4: Ll n L2

(©Ls=LiLy

(d)Le=L:i-L>

2. Consider the language L = d'b"c™. Which of the following strings are in L?
(@« (b) ab (c)c (d) aabc (e) aabbcc () abbcc

3. It probably seems obvious to you that if you reverse astring, the character that was originally first becomes
last. But the definition we've given doesn't say that; it says only that the character that was originally last
becomesfirst. If we want to be able to use our intuition about what happensto the first character in a proof, we
need to turn it into atheorem. Prove [x,awhere x isastring and ais asingle character, (ax)® = x"a

4. For each of the following binary functions, state whether or not it is (i) one-to-one, (ii) onto, (iii) idempotent,
(iv) commutative, and (v) associative. Also (vi) state whether or not it has an identity, and, if so, what it is.
Justify your answers.
(@ ||:SxS -~ S whereSisthe set of strings of length > 0
(&, b) =a||b (In other words, ssimply concatenation defined on strings)
(b) |I:LxL - L whereL isalanguage over some a phabet >
(& b)={wO>*:w=x|yfor somex [Jaand y[Ib} In other words, the concatenation of two
languages A and B isthe set of strings that can be derived by taking a string from A and then
concatenating onto it a string from B.

5. We can define aunary function F to be self-inverse iff [x O Domain(F) F(F(x)) = x. The Reverse function
on strings is self-inverse, for example.

(a) Give an example of a self-inverse function on the natural numbers, on sets, and on booleans.

(b) Prove that the Reverse function on stringsis self-inverse.

Solutions

1. First we observethat L, ={¢, a b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb} .
(& Ls={¢, a b, aa ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa}
(b) Ls={aa asa}
(c) Ls=every way of selecting one element from L, followed by one element from L
{ eaa, aaa, baa, aaaa, abaa, baaa, bbaa, aaaaa, aabaa, abaaa, abbaa, baaaa, babaa, bbaaa, bbbaa} [
{ caaa, asaa, basa, asaaa, abaaa, basaa, bbaaa, asasaa, aabaaa, abaaaa, abbaaa, basaaa, babaaa,
bbaaaa, bbbaaa}. Note that we've written €aa, just to make it clear how this string was derived. It
should actually be written asjust aa. Also note that some elements are in both of these sets (i.e.,
there's
more than one way to derive them). Eliminating duplicates (since L isa set and thus does not contain
duplicates), we get:
{ @, aaa, baa, asaa, abaa, basa, bbaa, asasa, ashaa, abaaa, abbaa, basaa, babaa, bbaaa, bbbaa, asssaa,
aabaaa, abasaa, abbaaa, baaaaa, babaaa, bbaaaa, bbbaaa}
(d) Le=everystringthatisinL, but notinL,: {€, a b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb} .

Homework 2 Strings and Languages 1

2.(a)
(b)
(c)
(d)
(e)
()

Yes. n=0andm=0.
Yes. n=1andm=0.
Yes. n=0andm=1.
No. There must be equal numbers of a'sand b's.
Yes. n=2andm=2.
No. There must be equal numbers of asand b's.

3. Prove: Ox,awhere x isastring and ais asingle character, (ax)® = x*a. Well use induction on the length of
x. If x| =0 (i.e, x =€), then (ae)" = a= e"a. Next we show that if thisistrue for all strings of length n, then it
istruefor al strings of length n+ 1. Consider any string x of length n + 1. Since |x| > 0, we can rewrite X asyb
for some single character b.

4. (a)

(b)

on

5.(a)
(b)

(@)} = (ayb)® Rewrite of X asyb
= b(ay)® Definition of reversal
= b(y"a) Induction hypothesis (since x| =n+ 1, [y| =n)
=(byMa Associativity of concatenation
=x"a Definition of reversal: If x = yb then x® = by®

(i) |lisnot one-to-one. For example, ||(ab, ¢) = ||(a, bc) = abc.

(i) |lisonto. Proof: OsO S, ||(s, €) = s, so every element of s can be generated.

(iii) || is not idempotent. ||(a, @) # a

(iv) || is not commutative. ||(ab, cd) # (cd, ab)

(v) ||isassociative.

(vi) || has € as both aleft and right identity.

(i) |lisnot oneto one. For example, Let = ={a, b, c}. ||({a}, {bc}) ={abc} =||({ab}, {c})

(ii) |[isonto. Proof: 0L OO X*, ||(L, {€}) =L, so every element of s can be generated. Notice that this
proof isvery similar to the one we used to show that concatenation of stringsisonto. Both proofsrely

the fact that € isan identity for concatenation of strings. Given the way in which we defined
concatenation of languages as the concatenation of strings drawn from the two languages, {€} isan
identity for concatenation of languages and thus it enables us to prove that all languages can be derived
from the concatenation operation.

(iii) || is not idempotent. ||({a}, {a}) = {aa}

(iv) || is not commutative. ||[({a}, {b}) ={ab}. But ||({b}, {a}) = {ba}.

(v) ||isassociative.

(vi) || has{ €} asboth aleft and right identity.

Integers: F(x) = -x isself-inverse. Sets: Complement is self-inverse. Booleans: Not is self-inverse.
We'll prove this by induction on the length of the string.

Basecase: If [x|=0or 1, thenx®=x. So(x")F=x"=x.

Show that if thisistrue for al strings of length n, then it istrue for all strings of lengthn + 1. Any
string s of length n + 1 can be rewritten as xa for some single character a. So now we have:

=ax® definition of string reversal
(S =(@xdH? substituting ax® for s%
= (xRa by the theorem we proved above in (3)
=xa induction hypothesis
=s since xawas just away of rewriting s

Homework 2 Strings and Languages 2

CS 341 Homework 3
L anguages and Regular Expressions

1. Describe in English, as briefly as possible, each of the following (in other words, describe the language
defined by each regular expression):

(@ L(((@ab)0b)

(b) L((((a*b*)*ab) O ((a*b*)*ba))(b [&*)

2. Rewrite each of these regular expressions as a simpler expression representing the same set.
(@0*O0a Ob* O (al by*

(b) ((a"b*)* (b*a*)*)*

(c) (ab)* U (b*a)*

3. Let > ={a, b}. Writeregular expressions for the following sets:
(a) All stringsin Z* whose number of asisdivisible by three.

(b) All stringsin 2* with no more than three a's.

(c) All stringsin =* with exactly one occurrence of the substring aaa.

4. Which of the following are true? Prove your answer.
(a) baa [J & b*a*b*

(b) b*a* n a*b* =a* [0 b*

(c) a*b* n cxd* =0

(d) abed O (a(cd)*b)*

5. Show that L((a 0 b)*) = L(a* (ba*)*).

6. Consider the following:
(a) (@l b) O (ab))*
(b) (& ab)
(c) ((ab)* 00)
(d) (((@) O o)* n (b0 c*))
(e) (O* O (bb*))
(i) Which of the above are “pure” regular expressions?
(i) For each of the above that isaregular expression, give asimplified equivalent “ pure” regular expression.
(iif) Which of the above represent regular languages?

7. True - False: For all languagesL1, L2, and L3

(@) (L1L2)* =L1*L2*

(b) (L1OL2* =L1* O L2*
(c)(L1O0L2)L3=L1L30L2L3

(d)(L1L2) O L3=(L10L3)(L20OLY3)

(e) L1)* =L1*

(f) (L) =L1"

(g) (L1*)" = (L1+)*

(hL1*=L1"00

(i) (ab)*a= a(ba)*

() (@O b)* b(@aldb)* =a* b(al b)*

(K)[(@Ob* b(@db)y* O (al b)* a(al b)*] = (al b)*
() [(@O0b)* b(@Ob)* O (al b)* a(ald b)*] =(al b)*
(m)[(@0 b)* ba(all b)* 00 a*b*] = (al b)*

Homework 3 Languages and Regular Expressions

(n) (L1L2L3)* = L1*L2*L3*
(0) (L1* O L3*) = (L1* O L3*)*

(p)L1* L1 =L1+

(@) (L1 O L2)* = (L2 0 L1)*

(r)L1* (L2 0 L3)" = (L1* L2" O L1* L3
(90 L1* =0

(t) O L1* ={g}

(u) (L1-L2) = (L2-L1)

(v) (L1L2) O (L1L3))* = (L1 (L2 O L3)*

8. LetL ={w {a b}* : w contains bba as a substring}. Find aregular expression for {a, b}* - L.

9.Let > ={ab}. For each of the following sets of strings (i.e., languages) L, first indicate which of the
example strings are in the language and which are not. Then, if you can, write a concise description, in English,
of the strings that are in the language.

Example strings: (1) aaabbb, (2) abab, (3) abba, (4) €

(@) L ={w:forsomeu O >*, w=u"u}

(b) L ={w : ww = www}

(c) L ={w: for someu [>*, www = uu}

10. Write aregular expression for the language consisting of all odd integers without leading zeros.

11. Let2={a b}. LetL ={¢, a b}. Let R bearelation defined on 2* asfollows. [Ixy, xRy iffy =xb. Let R’
be the reflexive, transitive closure of L under R. Let L' ={x: Ly [J L such that yR'x}. Write aregular
expression for L.

Solutions

1. (a) Any string of asand/or b's with zero or more as followed by asingle b.
(b) Any string of asand/or b'swith at least one occurrence of ab or ba.

2.(a O*={¢},andeU(@ldb)*.
a* U (al b)*.
b* O (all b)*. So sincethefirst three terms describe subsets of the last one, unioning them into the last
one doesn't add any elements. Thus we can write smply (a] b)*.
(b) To solve this one, well use some identities for regular expressions. We don't have time for an extensive
study of such identities, but these are useful ones:
((a* b*)* (b* a*)*)* =
Using (A*B*)* = (A O B)* (Both simply describe any string that is composed of elements of
A and elements of B concatenated together in any order)
(@bb*(bDa*) =
Using (A O B) =(B O A) (Set union is commutative)
(@bb*(@bby*)* =
Using A*A* = A*
(@ b)*)* =
Using (A*)* = A*
(@l b)*

Homework 3 Languages and Regular Expressions 2

(c) (a*b)* O (b*a)* = (all b)* (In other words, all stringsover {a, b}.) How do we know that? (a*b)* isthe
union of € and all stringsthat endinb. (b*a)* isthe union of € and al stringsthat end in a. Clearly any string
over {a, b} must either be empty or it must end inaor b. So we've got them all.

3. (&) The as must come in groups of three, but of course there can be arbitrary numbers of b's everywhere. So:
(b*ab*ab*a)* b*
Sincethe first expression has* around it, it can occur O or more times, to give us any number of a's
that isdivisible by 3.
(b) Another way to think of thisisthat there are three optional asand all the b'syou want. That gives us:
b* (al) b* (all €) b* (all €) b*
(c) Another way to think of thisisthat we need one instance of aaa. All other instances of aa must occur
with
either b or end of string on both sides. The aaa can occur anywhere so we'll plunk it down, then list the
options for everything else twice, once on each side of it:
(@UOaabOb)* aa (balbaal b)*

4. (a) True. Consider the defining regular expression: a*b*a*b*. To get baa, take no as, then one b, then two
asthennob's.

(b) True. We can prove that two sets X and Y are equal by showing that any stringin X must also beinY
and vice versa. First we show that any string in b*a* n a*b* (which we'll call X) must also bein a* [b*
(whichwelll call Y). Any stringin X must have two properties: (from b*a*): all b's come before all ds; and
(from a*b*): al a's come before all b's. The only way to have both of these properties simultaneoudy isto be
composed of only asor only b's. That's exactly what it takesto beinY.

Next we must show that every stringin Y isin X. Every stringin Y iseither of theform a* or b*. All strings
of theform a* arein X since we simply take b* to be b°, which givesusa* n a* = a*. Similarly for al strings
of the form b*, where we take a* to be &.

(c) False. Remember that to show that any statementsisfalseit is sufficient to find a single counterexample:

eda*b* ande lc*d*. Thuse O a*b* n c*d* , which istherefore not equal to [J.

(d) False. Thereisno way to generate abcd from (a(cd)*b)*. Let's call the language generated by
(a(cd)*b)* L. Noticethat every stringin L has the property that every instance of (cd)* isimmediately
preceded by a. abcd does not possess that property.

5. That the language on the right is included in the language on the left isimmediately apparent since every
string in the right-hand language is a string of alsand b's. To show that any string of alsand b'sis contained in
the language on the right, we note that any such string begins with zero or more as. If there are no b's, then the
stringis contained in @ . If thereisat least one b, we strip off any initial as as a part of a* and examine the
remainder. If there are no more b's, the remainder isin ba*. If thereisat least one more b to the right, then we
strip of theinitial b and any following consecutive a's (astring in ba*) and examine the remainder. Repeat the
last two steps until the end of the string is reached. Thus, every string of a's and b'sisincluded in the language
on theright.

6. (i) &, ¢, e (b contains superscript n; d contains n)
(i) (@ = (ad b)*
(=0
(€) =b*
(iii) 3, ¢, d, e (bis{a@™": m>n}, which is not regular)

7@FOFOTA@FREOTOT@T.MOFOT.OT.KFEOT,MT,M0F©)F @ T (by def. of
H@TOFRETOFRMWFEMT.

Homework 3 Languages and Regular Expressions 3

8. (a ba)* (¢ O b O bbb*) = (a0l ba)*b*

9. (a) (2) no (2) no, (3) yes, (4) yes
L iscomposed of strings whose second half isthe reverse of the first half.

(b) (1) no (2) no (3) no (4) yes
L contains only the empty string.

(c) (1) no (2) yes(3) no (4) yes

L contains strings of even length whose first half is the same as the second half. To see why thisis so,
notice that |uu| is necessarily even, sinceit's |u| times 2. So we must assure that jwww] is also even. Thiswill
only happen if |w|iseven. To discover what u isfor any proposed w, we must first write out www. Then we
splititin half and call that u. Suppose that w can be described as the concatenation of two strings of equal
length, r and s. (We know we can do this, since we already determined that |w| iseven.) Then w will be equal
to rsand www will bersrsrs. So u must equal both rsr and srs. There can only be such auif r and s are the
same.

10. (¢ O ((1-9)(0-9)*))(10315070119), or, without using € or the dash notation,
(A03050709) O
((1D203040506070809) (0U10203040506070809)* (103050709))

11. Whew. A lot of formalism. The key isto walk through it one step at atime. It'sgood practice. R relates
pairs of strings that are identical except that the second one has one extra b concatenated on theend. So it
includes, for example, {(a, ab), (ab, abb), (abb, abbb), (b, bb), (bb, bbb), ...}. Now we have to compute R'.
Consider the element a. First, we must add (a, a) to make R’ reflexive. Now we must consider transitivity. R
givesus (a, ab). But it also gives us (ab, abb), so, by transitivity, R" must contain (g, abb). Infact, amust be
related to all stringsin the language ab*. Similarly € must be related to al stringsin eb* or simply b*. And b
must be related to all stringsin bb*. We could also notice many other things, such as the fact that ab isrelated
to all stringsin abb*, but we don’t need to bother to do that to solve this problem. What we need to do isto
figureout what L' is. It’sall stringsthat arerelated viaR' to some element of L. There are three elementsof L,
{e,a b}. SoL'=b* [0 ab* O bb*. But every string in bb* isalso in b*, so we can ssimplify to b* [] ab*.

Homework 3 Languages and Regular Expressions 4

CS 341 Homework 4
Deterministic Finite Automata

1. If M isadeterministic finite automaton. Under exactly what circumstancesise [1L(M)?

2. Describe informally the languages accepted by each of the following deterministic FSMs:

a-

(from Elements of the Theory of Computation, H. R. Lewisand C. H. Papdimitriou, Prentice-Hall, 1998.)

Homework 4 Deterministic Finite Automata

3. Construct a deterministic FSM to accept each of the following languages:
(@ {wO{a b}*:each‘a inwisimmediately preceded and followed by a‘'b’}
(b) {w O {4, b}* : w has abab as a substring}
(c) {w O {a, b}* : w has neither aa nor bb as a substring}
(d) {w O {4, b}* : w has an odd number of as and an even number of b's}
(e) {w O {a, b}* : w has both ab and ba as substrings}

4. Construct a deterministic finite state transducer over {a, b} for each of the following tasks:
(@) On input w produce @', where n is the number of occurrences of the substring ab in w.
(b) Oninput w produce &', where n is the number of occurrences of the substring abain w.
(c) On input w produce a string of length w whose i symbol isan aif i =1 or if i > 1 and thei™ and (i-1)®
symbols of w are different; otherwise, the ™ symbol of the output is b.

5. Construct a dfa accepting L ={w [0 {&, b}* : w contains no occurrence of the string ab} .

6. What language is accepted by the following fsa?

7. Give adfaaccepting {x [J {a, b}* : at least one ain x is not immediately followed by b} .

8. LetL={w{a b}*: wdoesnot endin ba}.
(a) Construct adfaaccepting L.
(b) Give aregular expression for L.

9. Consider L ={a@":0<n< 4}
(a) Show that L isregular by giving adfathat acceptsit.
(b) Give aregular expression for L.

10. Construct a deterministic finite state machine to accept strings that correspond to odd integers without
leading zeros.

11. Imagine atraffic light. Let > ={a}. In other words, the input consists just of astring of as. Think of
each a as the output from atimer that signals the light to change. Construct a deterministic finite state
transducer whose outputs are drawn fromthe set { Y, G, R} (corresponding to the colors yellow, green, and
red). The outputs of the transducer should correspond to the standard traffic light behavior.

12. Recall the finite state machine that we constructed in class to accept $1.00 in change or bills. Modify
the soda machine so that it actually does something (i.e., some soda comes out) by converting our finite state
acceptor to afinite state transducer. Let there be two buttons, one for Coke at $.50 and one for Water at
$.75 (yes, it's strange that water costs more than Coke. The world isa strange place). In any case, there will
now be two new symbolsin the input aphabet, C and W. The machine should behave as follows:

Homework 4 Deterministic Finite Automata 2

» The machine should keep track of how much money has been inserted. If it ever gets more than $1.50, it
should spit back enough to get it under $1.00 but keep it above $.75.

» If the Coke or Water button is pushed and enough money has been inserted, the product and the change
should be outpui.

« If abutton is pushed and there is not enough money, the machine should remember the button push and
wait until there is enough money, at which point it should output the product and the change.

13. Consider the problem of designing an annoying buzzer that goes off whenever you try to drive your car
and you're not wearing a seat belt. (For ssimplicity, we'l just worry about the driver's possible death wish. If
you want to make this harder, you can worry about the other seats aswell.) Design afinite state transducer
whose inputs are drawn from the alphabet { K1, KR, SO, SU, BF, BU}, representing the following events,
respectively: "key just inserted into ignition", "key just removed from ignition”, "seat just became
occupied”, "seat just became unoccupied”, "belt has just been fastened”, and "belt has just been unfastened".
The output alphabet is{ ON, OFF}. The buzzer should go on when ON is output and stay off until OFF is
output.

14. Isit possible to construct afinite state transducer that can output the following sequence:
1010010001000010000010000001...
If it is possible, design one. If it's not possible, why not?

Solutions

1. e O L(M) iff theinitial stateisafinal state. Proof: M will hatinitsinitial state given € asinput. So: (IF)
If theinitial stateisafinal state, then when M haltsin theinitial state, it will bein afinal state and will
accept e asan element of L(M). (ONLY IF) If theinitial stateis not afinal state, then when M haltsin the
initial state, it will reject itsinput, namely €. So the only way to accept € isfor the initial state to be afinal
state.

2.

(o) You must read a to reach the unique final state. Once there, you may read ba
and still accept. So the language is a(ba)*. (Or (abd)*a.) This problem is fairly easy to
analyze. (Informally, you could describe this as all strings that begin and end with a, and
the symbois alternate a and b, or something of this nature; giving the regular expression is
much clearer and easier.)

.{(b) There are two final states that are reachable. This one is quite easy because
once you reach the final states you cannot go further. The obvious answer is aa*bUb. This
can be simplified to a*b. The machine is distinguishing between whether the aumber of a’s
is positive or 0, but there is no need to.

¢) This one is trickier. How can we reach the final state here? By going to the
middle state with a and then returning with . This can be iterated. But while in the
middle state we may iterate ab. So the answer is (a(abd)*b)".

(d) This one is similar to (¢) but easier. We can reach the final state by reading
ab or ba, and in either cass we may iterste again. So (ad U da)* is the solution.

Homework 4 Deterministic Finite Automata 3

{e) Number the states 1,2,3,4,5,6 going right to left, top to bottom. The following
properties characterise each state: »
1: ¢ has been read.
2: zb has been read, for some z € (a U b)° not ending in b.
: zbb has been read, for some z € (a U b)°.
: za has been read, for some z € (a U b)* not ending in a.
: zaa has been read, for some z € (a U b)°.
: zbbay or zaaby has been read, for some z,y € (a U b)°.
Therefore the language is all strings containing bba or aad as a substring, i.e., (a U b)*(bba
aab)(a U b)°.

D oW

(a) L = {w € {a,0}* : each a in w is immediately preceded and immediately

followed by a b}.

" (A regular expression for L is (b°ba)(b*ba)*bs* U °, or, using *,

(b*a)*dt U b®. Notice the necessary distinction between strings with no a’s and those with
a’s. Why doesn’t the simpler §°(b*ad*)* work?)

This will need a machine with s deadstate because as soon as we see an a not preceded

or followed by a b, the string should be rejected and no matter what comes later, the string
is bad. Le., we will assume the string is ok until a specific occurence which tells us to reject
the string.

Clearly e € L since every a in ¢ has the property. Now for any longer string, the
machine only needs to remember what the last symbol was to determine if the string should

be rejected.

So we could make states with the properties:

1: e € L has been read.

2: za has been read, for some z € L not ending in g (the string so far is ok, but we'd better
see 3 b next since za ¢ L.)

3: zb € L has been read (the string so far is ok.)

4: z has been read, such that for no y is zy € L. (we know the string is bad - no matter
what comes later.)

You should be able to draw the machine now. Notice that s = 1, F = (1,3}.
(b) L = {w € {a,b}* : w has ababd as & substring}.
(A regular expression for L is easy: (a U b)*abab(a U b)°.)
Again we need to keep track only of the last part of the string, in this case the last 3
symbols. In this one we are looking for an occurence in the string which will make us accept

the string (compare to Problem (a).) Once there has been an occurence of abab, whatever
follows is irrelevant.

Lol Sl 4

Here are the relevant properties of the string as it is read in:

1: z has been read, for some z € (a Ub)" such that z € L and z does not end in a.

: za has been read, for some z € (a U)® such that z € L and z does not end in ab.

: zab has been read, for some z € (a U)* such that z ¢ L and z does not end in ab.
zaba has been read, for some z € (a U b)* such that 2 ¢ L and 2 does not end in ab.

: zababy has been read, for some z,y € (aUb)* such that = € L and z does not end in ab.

Homework 4 Deterministic Finite Automata

So a 5 state machine can do the trick. The start state is 1, because that’s the property
e has (¢ € (aUb)* and e does not end in a.) Any string with property 1 which is then
followed by b continues to have property 1, s0 §(1,5) = 1. Any string with property 1 which
is then followed by @ now has property 2, so §(1,a) = 2. And so on. Clearly 88,0) =5
since once abab has been seen, that fact cannot be changed - abab continues to have been
seen. Clearly a string has abab as a substring iff it has property 5, so F = {5}. Now you
draw the DFA.

(¢) L = {w € {a,b}" : w has neither aa nor bb as a substring}.

(A regular expression for L is eUa(ba)* (bUe)Ub(abd)* (aUe). This distinguishes between
whether the string starts with a or b or is empty. Another one is (aU e)(ba)*(bUe), though
this is perhaps less obvious.)

Like Problem (a), we should assume the string is ok until we see a bad occurence (aa or
bd). To test this, we clearly only need to keep track of the last symbol read. So the relevant
properties are:

1: e has been read (and so a or b may follow.)

2: za has been read, for some za € L (so only b may follow.)
3: zb has been read. for some zb € L (so only a may follow.)
4: 2 has been read, forsome z ¢ L.

Clearly any string with property 1,2 or 3 isin L, so F = {1,2, 3}. The start state is 1.
Now you draw it.

(d) L = {w € {a,d}" : #(a, w) is odd and #(3, w) is even}.

I use the function #(e,) to mean “the number of occurences of symbol ¢ in string z.”
E.g., #(a,aba) = 2 and #(b,aaa) = 0.

Unlike the previous problems, there is no specific occurence we are looking for, either to
reject or accept the string. Instead, we need to continually monitor it. When the string is
all read in, its status will then determine whether it is accepted or rejected.

Clearly what we need to monitor is the parity (even or odd) of the number of a’s and
the number of b's. These are independent data, so there are 2 x 2 = 4 possible states or
properties:

(0,0): z has been read, where #(a, z) and #(b, z) both even.
(0.1): z has been read, where #(a,z) even and #(b, z) odd.
(1,0): z has been read, where #(a, z) odd and #(b, 2) even.
(1,1): z has been read, where #(a, z) and #(b, z) both odd.

Since #(c,¢) = 0, and 0 is even, the start state is (0,0). (A fair number of people
unnecessarily distinguish between 0 and other even numbers, producing machines with more
states than necessary.) The only final state is (1,0). § can be defined by §((m,n),a) =
(m+1 mod 2,n) and §((m, n),b) = (m,n + 1 mod 2).

This is a technique easily generalised. Finite automata cannot count to arbitrarily high
natural sumbers, but they ces count modulo s number (so-called “clock arithmetic”). The
DFA just given counts the number of a’s and the number of b’s modulo 2. (A number m is
even iff m is congruent to 0 mod 2, written z = 0 mod 2, eg,z=..,-2024,..) You
could design a DFA to accept all strings z with #(a,z) = 7 mod 12 and #(b,z2)EO0mod §
and and #(c,2) = 2 mod 3, i.e., #(a,2) = 7,19,26, ... and #(b, 2) is & multiple of 5 and

Homework 4 Deterministic Finite Automata

#(e,z) = 2,5,8,.... A minimum state DFA to accept this language uses 12 x 5 x 3 = 180
states. For notational convenience, I would call the states (i, j, k), where 0 < i < 12,
0 < j<5and 0 < k< 3. Then the final state would be (7,0,2). The start state is of course
(0,0,0).

What would you do if you wanted all strings z with #(a,z) = 2 or 3 mod 4, or #0,z)=
1 mod 37 (Hint: the states are constructed in the same manner; only the final conditions
are different.)

(e) L = {w € {a,b}" : w has both ab and ba as substrings}.

Here we are looking for not one occurence but two in the string. There are two subtleties.
Either event might occur first, so we must be prepared for the ab or the ba to be read
first. Also, the definition of L does not require the two substrings of ab anb ba to be
nonoverlapping: e.g.,aba € L.

1: e has been read (30 we have seen neither substring.)
: @™ has been read, for some m > 1 (30 we have seen neither substring.)
: a™b" has been read, for some m,n > 1 (so we have seen ab.)
: b™ has been read, for some m > 1 (30 we have seen neither substring.)
: ™a™ has been read, for some m,n 2 1 (so we have seen ba.)
: a™b"az or b™a"bz has been read, for some m,n > 1 and z € (a U b)* (so we have seen
ab and ba.)

N N b W N

Clearly, 1 is the start state and {6} is the set of final states. You should be able to draw
the DFA now.

4. (@

(b)

Homework 4 Deterministic Finite Automata

(©)

b Q a
ab
oS W oI
6. (aa)* (bb* [bb*a(aa)*) = (aa)*b’(e O a(aq)*) = al strings of a's and b's consisting of an even number of
as, followed by at least one b, followed by zero or an odd number of as.

8. (a) (byedal (al by* (b O aa)

7.

Homework 4 Deterministic Finite Automata

9.(a)

(b) (¢ O ab O aabb Daaabbb Casaabbbb)

Homework 4 Deterministic Finite Automata

CS 341 Homework 5
Regular Expressions in UNIX

Regular expressions are all over the place in UNIX, including the programs grep, sed, and vi.
There's a regular expression pattern matcher built into the programming language perl. There's also
one built into the majordomo maillist program, to be used as a way to filter email messages. So it's
easy to see that people have found regular expressions extremely useful. Each of the programs that
uses the basic idea offers its own definition of what a regular expression is. Some of them are more
powerful than others. The definition in perl is shown on the reverse of this page.

1. Write perl regular expressions to do the following things. If you have easy access to a perl
interpreter, you might even want to run them.

(a) match occurrences of your phone number

(b) match occurrences of any phone number

(c) match occurrences of any phone number that occurs more than once in a string

(d) match occurrences of any email address that occurs more than once in a string

(e) match the Subject field of any mail message from yourself

(f) match any email messages where the address of the sender occurs in the body of
the message

2. Examine the constructs in the perl regular expression definition closely. Compare them to the
much more limited definition we are using. Some of them can easily be described in terms of the
primitive capabilities we have. In other words, they don't offer additional power, just additional
convenience. Some of them, though, are genuinely more powerful, in the sense that they enable you
to define languages that aren't regular (i.e., they cannot be recognized with Finite State Machines).
Which of the perl constructs actually add power to the system? What is it about them that makes
them more powerful?

Homework 5 Regular Expressions in UNIX 1

Regular Expressions in perl

. Matches any character except newline
{a-20-9] Matches any single character of set

[*a~20-9] Matches any single character not in set
\d Matches a digit, same as [0~9]
\D Matches a non-digit, same as ["0-9]
\w Matches an alphanumeric (word) character (a~zA-Z0-9_]
\W Matches a non-word character [“a-zA~Z0-9_]
\s Matches a whitespace char (space, tab, newline...)
\S Matches a non-whitespace character

\n Matches a newline

\r Matches a return

\t Matchesatab

\f Matches a formfeed .
\b Matches a backspace (inside {] only)

\0 Matches a null character :

\000 Also matches a null character because...
\nnn Matches an ASCII character of that octal value
\xnn Matches an ASCII character of that hexadecimal value
\ceX Matches an ASCII control character
\metachar ~ Matches the character itself (\|,\.,*...)
(abc) Remembers the match for later backreferences

\1 Matches whatever first of parens matched
\2 Matches whatever second set of parens matched
\3 and so on...

x? Matches 0 or 1 x’s, where x is any of above
x* Matches 0 or more x’s
x+ Maiches 1 or more x’s

x{m,n} Matches at least m x’s but no more than n
abc Matches all of a, b, and ¢ in order
fee|fie|foe Matches one of fee, fie, or foe
\b Matches a word boundary (outside [] only)
\B Matches a non-word boundary

Anchors match to the beginning of a line or string
$ Anchors match to the end of a line or string

from Programming in Perl, Larry Wall and Randall L. Scwartz, O’'Reilly & Associates, 1990.

Homework 5 Regular Expressions in UNIX

CS 341 Homework 6
Nondeter ministic Finite Automata

1. (a) Which of the following strings are accepted by the nondeterministic finite automaton shown on the left below?

0] a
(i) aa
(iii) aab
(iv) €

(b) Which of the following strings are accepted by the nondeterministic finite automaton on the right above?

0] €

(i) ab
(iii) abab
(iv) aba
(V) abaa

2. Writeregular expressions for the languages accepted by the nondeterministic finite automata of problem 1.

3. For any FSM F, let |F| be the number of statesin F. Let R be the machine shown on the right in problem 1.
LetL ={w {0, 1}* : M such that M isan FSM, L(M) = L(R), M| = |R|, and w is the binary encoding of [M[}. Writea
regular expression for L.

4. Draw state diagrams for nondeterministic finite automata that accept these languages:
() (ab)*(ba)* [aa*

(b) ((ab U aab)*a)*

(c) ((ab*a)*b)*

(d) (baO b)* O (bb O a)*

5. Some authors define a nondeterministic finite automaton to be aquintuple (K, Z, A, S, F), where K, Z, A, and F are aswe
have defined them and Sis afinite set of initial states, in the same way that F is afinite set of final states. The automaton may
nondeterministically begin operating in any of these initial states. Explain why this definition is not more general than oursin
any significant way.

6. (a) Find a simple nondeterministic finite automaton accepting ((a [0 b)*aabab).

(b) Convert the nondeterministic finite automaton of Part (a) into a deterministic finite automaton by the method described
in class and in the notes.

(c) Try to understand how the machine constructed in Part (b) operates. Can you find an eguivalent deterministic machine
with fewer states?

7. Construct aNDFSA that accepts the language (ba O ((a O bb) a*by)).

Homework 6 Nondeterministic Finite Automata 1

8. Construct a deterministic finite automaton equivalent to the following nondeterministic automaton:

abO\ b b

9.L={wlO{a b}* : every aisfollowed by at least oneb }
(a) Write aregular expression that describesL.
(b) Write aregular grammar that describesL.
(c) Construct an FSM that accepts precisely L.

10. Consider the following regular grammar, which defines alanguage L :

S->DbF
S->as
F->¢
F->bF
F->aF

(a) Construct an FSM that accepts precisely L.

(b) Write aregular expression that describes L.

(c) Describe L in English.

Solutions

1. (a) [i.] yes [ii.] yes [iii.] no [iv.] yes
(b) [i.] yes [ii.] yes [iii.] yes [iv.] yes [v.] no

2. (a) a* Note that the second state could be eliminated, since there's no path from it to afinal state.
(b) (ab O aba)* Notice that we could eliminate the start state and make the remaining final state the start state and we'd
still get the same resullt.

3. To determine L, we need first to consider the set of machines that accept the same language as R. It turns out that we don't
actually need to know what all such machines look like because we can immediately see that there's at least one with four
states (R), one with 5, one with 6, and so forth, and all that we need to establish L isthe sizes of the machines, not their
structures.. From R, we can construct an infinite number of equivalent machines by adding any number of redundant states.
For example, we could add a new, nonfinal state 1 that is reachable from the start state via an € transition. Since 1 is not final
and it doesn’t go anywhere, it cannot lead to an accepting path, so adding it to R has no affect on R's behavior. Now we have
an equivalent machine with 5 states. We can do it again to yield 6, and so forth. Thus the set of numbers we need to
represent issimply 4 < n. Now all we haveto do isto describe the binary encodings of these numbers. 1f we want to
disallow leading zeros, weget 1(0 0 1) (0O 1) (0 O 1)*. There must be at least three digits of which the first must be 1.

4. (a) The easiest way to do thisisto make a 2 state FSA for aa* and a 4 state one for (ab)* (ba)*, then make a seventh state,
the start state, that nondeterministically guesses which class an input string will fall into.
(b) First we simplify. ((ab O aab)*a*)*
[(LL)* = (L O L))"/
((ab O aab) O a)*

/ union is associative /
(ab O aab 0 &@*, which can be rewritten as

Homework 6 Nondeterministic Finite Automata 2

(ab O a@)*. Thisisso because aab can be formed by one application a, followed by one of ab. So it
isredundant inside a Kleene star. Now we can write atwo state machine;

If you put the loop on a on the start state, either in place of where we have it, or in addition to it, it's also right.
(c) First we simplify: ((a*b*a*)*b)*

[(Ly*Lo*Ls*)* = (L O L, O Ly)* /
(a0 bd a*b)*
/ union is idempotent /
(@@l b)*h)*
Thereisasimple 2 state NDFSM accepting this, which is the empty string and all strings ending with b.
(d) Thisisthe set of strings where either: (1) every ais preceded by ab,
or (2) al b'soccurin pairs.
So we can make a five state nondeterministic machine by making separate machines (each with two states) for the two
languages and then introducing € transitions from the start state to both of them.

5. To explain that any construct A is not more general or powerful than some other construct B, it suffices to show that any
instance of A can be simulated by a corresponding instance of B. So in this case, we have to show how to take a multiple start
state NDFSA, A, and convert it to aNDFSA, B, with asingle start state. We do thisby initially making B equal to A. Then
add to B anew state welll call SO. Make it the only start statein B. Now add € transitions from SO to each of the states that
was a start statein A. So B has asingle start state (thusit satisfies our original definition of a NDFSA), but it simulates the
behavior of A sincethefirst thing it does isto move, nondeterministically, to all of A's start states and then it exactly mimics
the behavior of A.

6. If you take the state machine asit is given, add a new start state and make ¢ transitions from it to the given start states, you
have an equivalent machine in the form that we’ ve been using.

7.(a)

(b) (1) Compute the E(g)s. Since there are no € transitions, E(q), for al statesqisjust {q}.

(2 S ={q0}

3o = { ({q0}, & {q0, q1}),
({90}, b, {{q0}),
({90, g1}, a {q0, g1, g2}),
({90, g1}, b, {q0}),
({90, a1, 92}, a {q0, a1, g2}),
({90, a1, g2}, b, {90, g3}),
({90, g3}, & {90, g1, g4}),
({90, g3}, b, {q0}),
({90, g1, g4}, a {q0, a1, g2}),
({90, g1, g4}, b, {q0, g5}),
({90, g5}, & {q0, q1}),
({90, g5}, b, {q0}) }

Homework 6 Nondeterministic Finite Automata 3

(4 K" ={{q0}, {00, q1},{q0, a1, g2}, {q0, 93}, {90, q1, g4}, {q0, 5} }
() F ={{q0, a5}}
(c) Thereisn’t asimpler machine since we need a minimum of six statesin order to keep track of how many characters
(between 0 and 5) of the required trailing string we have seen so far.

8. We can build the following machine really easily. We make the path from 1 to 2 to 3 for the ba option. The rest isfor the
second choice. We get a nondeterministic machine, as we generally do when we use the simple approach.

Y bl@a,

In this case, we could simplify our machine if we wanted to and get rid of state 4 by adding atransition on b from2to 5.

9. (1) E(q0) ={q0, g1}, E(q1) ={ql}, E(92) ={qg2}, E(a3) ={a3, g4}, E(q4) = { a4}
(2 s ={q0, q1}
(]9 = { {90, g1}, & {q0, q1}),
({90, g1}, b, {q0, q1, g2, g4}),
({90, g1, 2, g4}, a {90, g1, g3, g4}),
({90, g1, g2, g4), b, {q0, g1, g2, g4}) }
({90, g1, g3, g4}, a {90, g1, g3, g4}),
({90, g1, 3, g4}, b, {d0, g1, g2, g4}),
(4) K ={ {d0, g1}, {q0, g1, g3, g4}, {q0, g1, g2, g4} }
(®) F ={{d0, a1, g3, g4}, {q0, a1, g2, g4} }

This machine corresponds to the regular expression a*b(al b)*

10. (a)

(b) (a0 by*ba* OR a*b(all b)*

(oL={wO{ab}*: thereisat least oneb}

Homework 6 Nondeterministic Finite Automata 4

CS 341 Homework 7
Review of Equivalence Relations

1. Assume afinite domain that includes just the specific cities mentioned here. Let R = the reflexive,
symmetric, transitive closure of:
(Austin, Dallas), (Dallas, Houston), (Dallas, Amarillo), (Austin, San Marcos),
(Philadel phia, Pittsburgh), (Philadel phia, Paoli), (Paoli, Scranton),
(San Francisco, Los Angeles), (Los Angeles, Long Beach), (Long Beach, Carmel)
(a) Draw R asagraph.
(b) List the elements of the partition defined by R on its domain.

2. Let R be arelation on the set of positive integers. Define R asfollows:
{(a,b): (amod 2) = (bmod 2)} Inother words, R(a, b) iff aand b have the same remainder when
divided by 2.
(a) Consider the following example integers: 1, 2, 3, 4, 5, 6. Draw the subset of R involving just these values as
agraph.
(b) How many elements are there in the partition that R defines on the positive integers?
(c) List the elements of that partition and show some example elements.

3. Consider the language L, over the alphabet X = { a, b}, defined by the regular expression
a*(bOeg) a*
Let R beareation on *, defined as follows:
R(x, y) iff bothx andy arein L or neither x nor y isin L. In other words, R(x,y) if x and y have
identical statuswith respectto L.
(a) Consider the following example elements of 2*: €, b, aa, bb, aabaaa, bab, bbaabb. Draw the subset of R
involving just these values as a graph.
(b) How many elements are there in the partition that R defines on >*?
(c) List the elements of that partition and show some example elements.

Solutions
1 (b) [citiesin Texag], [citiesin Pennsylvania), [citiesin California]
2. (b) Two

(c) [even integers] Examples: 2, 4, 6, 106
[odd integers] Examples: 1, 3, 5, 17, 11679

3. (a) (Hint: L isthe language of strings with no more than one b.)
(b) Two
(c) [stringsin L] Examples: €, aa, b, asbaaa
[stringsnotin L] Examples: bb, bbaabb, bab

Homework 7 Review of Equivalence Relations 1

CS 341 Homework 8
Finite Automata, Regular Expressions, and Regular Grammars

1. We showed that the set of finite state machinesis closed under complement. To do that, we presented a
technique for converting a deterministic machine M into a machine M' such that L (M") is the complement of
L(M). Why did we insist that M be deterministic? What happens if we interchange the final and nonfinal states
of anondeterministic finite automaton?

2. Give adirect construction for the closure under intersection of the languages accepted by finite automata.
(Hint: Consider an automaton whose set of statesis the Cartesian product of the sets of states of the two
original automata.) Which of the two constructions, the one given in the text or the one suggested in this
problem, is more efficient when the two languages are given in terms of nondeterministic finite automata?

3. Using the either of the construction techniques that we discussed, construct a finite automaton that accepts
the language defined by the regular expression: a* (ab [ba[J €)b*.

4. Write aregular expression for the language recognized by the following FSM:

a—’
b
b a
a
ab
b
5. Consider the following FSM M:
Q)

(a) Write aregular expression for the language accepted by M.
(b) Give adeterministic FSM that accepts the complement of the language accepted by M.

w

6. Construct a deterministic FSM to accept each of the following languages:
(a) (aba O aabaa)*
(b) (ab)* (aab)*

7. Consider the language L = {w [(g, b)* : w has an odd number of a's}

(a) Write aregular grammar for L.
(b) Use that grammar to derive a (possibly nondeterministic) FSA to accept L.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 1

8. Construct a deterministic FSM to accept the intersection of the languages accepted by the following FSMs:

a a b b
b /)
g

@ b
BN o

9. Consider the following FSM M:

q@/b :@ % : >@D‘”

(a) Give aregular expression forL (M).
(b) Describe L(M) in English.

Solutions

1. We define acceptance for aNDFSA corresponding to the language L as there existing at least one path that
getsusto afinal state. There can be many other paths that don't, but we ignore them. So, for example, we
might accept a string S that gets us to three different states, one of which accepts (which is why we accept the
string) and two of which don't (but we don't care). If we simply flip accepting and nonaccepting states to get a
machine that represents the complement of L, then we still have to follow all possible paths, so that same string
Swill get us to one nonaccepting state (the old accepting state), and two accepting states (the two states that
previously were nonaccepting but we ignored). Unfortunately, we could ignore the superfluous nonaccepting
pathsin the machine for L, but now that those same paths have gotten us to accepting states, we can't ignore
them, and we'll haveto accept S. In other words, we'll accept S as being in the complement of L, even though
we also accepted it asbeing in L. The key isthat in a deterministic FSA, argjecting path actually means reject.
Thus it makes senseto flip it and accept if we want the complement of L. InaNDFSA, arejecting path doesn't
actually mean reject. So it doesn't make senseto flip it to an accepting state to accept the complement of L.

2.

Given two DFA’s M\, = (K1,L,6,8,F1) and M3 =
(K3, £, 82, 83, F2), we wish to construct a new machine M = (X, L, §, s, F) such that L(M) =
L(My) N L(M3). (Notice that of course the alphabets of the 3 DFA’s will be equal.)

Since the regular languages are closed under union and complementation, and since
Linky = m, closure under intersection is already proved. This direct construction
will avoid using the earlier constructions and illustrates a different proof technique.

The hint is to let K = Ky x K3. Thus each state of M is really a pair (g1, q2) of states
from M, and M;. The intuition will be that M simultaneously simulates M, and Mz on a
given input string. M will keep track of what states M; and M; would be in if they were
reading the string. These are two independent pieces of data; hence the use of a pair for
M'’s state.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 2

Initially, M, and M3 start in their start states, s; and s3. Therefore we should let
s = (81, 92).

Now suppose that M, is in some state ¢; € K| and reads symbol ¢. What state does M,
enter? 61(q1,0). Similarly for M;. So we would like M, when in state (q;,q2) and reading
o, to enter state (§1(q1,2),82(q2, 7)); otherwise M would not be correctly keeping track of
what M, and M2 would do."So we define, for all (¢1,¢3) € K and alle € &,

(91, 92)s 0) = ($1(q1, @), 63(g2, 7))

Notice that § : K x T — K. so everything is consistent and correct. Since K = K, x K,
this means 6 is actually a function taking a pair of states (from M; and M-) and a symbol
from L.

We've now got the transitions defined, and M correctly simulates M; and Ma. Le.,

5(s,z) = (q1,q3)
iff
51(81,z) = q1 and §3(s3,2) = ¢3.}

So we only need to define F'. When shouid M accept z? Exactly when both M, and M,
do, since z € L(My) N L(M3) iff z € L(M,) and £ € L(M3). Therefore F should consist of
all those states (¢1,92) € K such that ¢; € F1 and g3 € Fy. This can be written as

F={(q1,92) : 1 € F\ and ¢2 € F3},

or more succinctly as F = Fy x F3.
Thus the complete answer is

M = (K, x K3, L,§ (81,93), F1 x F3)

where '
6((910 “)- ’) = (61(111 ’)o &(”s ’))'

Notice that this assames M; and M; are deterministicc. What if M; and M3 are not
deterministic? We can assume that they are deterministic without loss of generality, because
if they were not, the subset construction can be applied to them to produce equivalent
DFA’s. However, this construction can be modified to work directly on NFA's if desired.
Unfortunately, it gets rather messy because of the following problem:

We are given two NFA’s M) = (K}, E,A1,0,F1) and My =
(K3,Z.A4, 32, F3), and we wish to construct a new machine M = (K, L, A, s, F) such that
L(M) = L(My) N L(Ma).

‘Todﬂuﬂy.éhcm:doynbohmmwhmnmuﬂywit to strings by the
recursive generalization:

§(q.e) = 4
5(q.02) = 6(8(q.0). %)

Le., if it is determined what § does with s singie symbol, then it is determined what § does with a string
simply by tracing through symbol by symbol.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars

If we do the obvious thing and define

A= {((QI- Q). 2, (qlh 22)) : (a2, ﬁ) € Ay and (920 <, qs) € Aﬂ}v

i.e., we make a transition (1,92) = (¢},¢3) in M exactly when there are transitions ¢; — ¢}
in M, and q3 — ¢4 in Ma,then there is trouble. The trouble is that the transitions in an
NFA need not read exactly 1 symbol, so M defined this way will be unable to simulate many
of moves of My and Ma. E.g., if M} has the transition (1,1, aa, q1) and M3 has (32, a, ¢3), you
can see that M will have dificulty keeping in synch. So A will have to be defined much more
cleverly (and compiexly). So it’s much easier to just assume M; and .\ are deterministic.

4. Without using the algorithm for finding aregular expression from an FSM, we can note in this case that the
lower right state is a dead state, i.e., an absorbing, non-accepting state. We can leave and return to the initial
state, the only accepting state, by reading ab along the upper path or by reading ba along the lower path. These

can be read any number of times, in any order, so the regular expression is (ab [J ba)*. Note that € isincluded,
asit should be.

5.(a) € O ((a O ba)(ba)*b)

(b)

6. (a)

ab

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 4

(b)

7. (&) Nonterminal Sisthe starting symbol. We'l use it to generate an odd number of as. Well aso use the
nonterminal E, and it will always generate an even number of as. So, whenever we generate an a, we must

either stop then, or we must generate the nonterminal E to reflect the fact that if we generate any more ds, we
must generate an even number of them.

S-a
S- a
S - bS
E-b
E - bE
E - aS

9. (a) (al bb*aa)* (¢ O bb*(al €))
(b) All stringsin {& b}* that contain no occurrence of bab.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 5

CS 341 Homework 9
Languages That Areand Are Not Regular

1. Show that the following are not regular.

(@ L ={ww":wO{a b}*}

(b) L ={ww:w O{a b}*}

(c)L={ww':w{a b}*}, wherew' stands for w with each occurrence of areplaced by b, and vice versa.

2. Show that each of the following is or is not a regular language. The decimal notation for a number is the
number written in the usual way, as a string over the alphabet {-, 0, 1, ..., 9}. For example, the decimal
notation for 13 isastring of length 2. In unary notation, only the symbol 1 is used; thus 5 would be represented
as 11111 in unary notation.

(&) L ={w : wisthe unary notation for a natural number that is a multiple of 7}

(b) L ={w : wisthe decimal notation for a natural number that isamultiple of 7}

(c) L ={w : wisthe unary notation for a natural number n such that there exists a pair p and g of twin primes,
both > n} Two numbers p and q are a pair of twin primes iff g = p + 2 and both p and q are prime. For
example, (3, 5) isapair of twin primes.

(d) L ={w:wis, for somen = 1, the unary notation for 10"}

(e) L ={w:wis, for somen = 1, the decimal notation for 10"}

(f) L = {w is of the form x#y, where x, y 0 {1} and y = x+1 when x and y are interpreted as unary numbers}
(For example, 11#111 and 1111#11111 0 L, while 11#11, 1#111, and 1111 0 L.)

(@ L={av:In-j|=2}

(h) L ={uww?v:u,v,wO{a b}+}

()L ={w {a b}* : for each prefix x of w, #a(x) = #b(x)}

3. Are the following statements true or false? Explain your answer in each case. (In each case, afixed alphabet
> isassumed.)

(a) Every subset of aregular languageis regular.

(b) LetL"=L1n L2. If L"isregular and L2 isregular, L1 must be regular.

(c)If Lisregular, thensoisL'={xy:xOLandy OL}.

(d) {w : w=w"} isregular.

(e) If L isaregular language, then soisL' ={w:w OL andw? OL}.

(f) If Cisany set of regular languages, [LIC (the union of all the elements of C) isaregular language.
(9) L = {xyx?: x,y O0>*} isregular.

(h) If L'=L10L2isaregular language and L1 isaregular language, then L2 is aregular language.
(i) Every regular language has a regular proper subset.

(1) If L1 and L2 are nonregular languages, then L1 [J L2 isalso not regular.

4. Show that the language L = {ah™: n# m} isnot regular.

5. Prove or disprove the following statement:
If Ly and L, are not regular languages, then L, [L, isnot regular.

6. Show that the language L = {x [{a, b}* : x = a'ba ™bad™ ™"} is not regular.
7. Show that the language L = {x O {& b}* : x contains exactly two more b's than a's} is not regular.

8. Show that the language L = {x [1{&, b}* : x contains twice as many dsas b's} isnot regular.

Homework 9 Languages That Are and Are Not Regular 1

9. LetL ={w: #a(w) = #b(w)}. (#a(w) =the number of asinw.)
(a) IsL regular?
(b) IsL* regular?

Solutions

1. (@) L ={ww®:wDO{a b}*}. L istheset of al strings whose first half is equal to the reverse of the second
half. All stringsin L must have even length. If L isregular, then the pumping lemmatells usthat [IN > 1, such
that O stringsw O L, where jw| = N, X, y, z, such that w = xyz, [xy|< N,y # ¢, and 0 g =0, xy%zisinL. We
must pick astringw [J L and show that it does not meet these requirements.

First, don't get confused by the fact that we must pick a string w, yet we are looking for strings of the form
wwR. These are two independent uses of the variable name w. It just happens that the problem statement uses
the same variable name that the pumping lemma does. If it helps, restate the problemasL = {ss": s {a, b}*}.

We need to choose a“long” w, i.e., one whose length is greater than N. But it may be easier if we choose one
that is even longer than that. Remember that the fact that [xy| < N guarantees that y (the pumpable region) must
occur within thefirst N characters of w. If we don’t want to have to consider alot of different possibilities for
what y could be, it will help to choose aw with along first region. Let’slet w = a'bba. We know that y must
consist of one or more @ sin the region beforethe b’s. Clearly if we pump in any extraa’'s, we will no longer
haveastringinL. Thuswe know that L is not regular.

Notice that we could have skipped the b’s altogether and chosen w = a“a". Again, we’ d know that y must be a
string of one or more a's. Unfortunately, if y is of even length (and it could be: remember we don’t get to pick
y), then we can pump in all the copies of y we want and still have astringin L. Sure, the boundary between the
first half and the second half will move, that that doesn’t matter. It isusually good to choose a string with a
long, uniform first region followed by a definitive boundary between it and succeeding regions so that when
you pump, it's clearly the first region that has changed.

(b) L ={ww : w O {a b}*}. Well use the pumping lemma. Again, don't get confused by the use of the
variable w both to define L and as the name for the string we will choose to pump on. Asis always the case,
the only real work we have to do isto choose an appropriate stringw. We need one that islong enough (i.e., |w|
> N). And we need one with firm boundaries between regions. So let’s choosew = a'bab. Since [xy| < N, we
know that y must occur in the first aregion. Clearly if we pump in any additional a's, the two halves of w will
no longer be equal. Q. E. D. By the way, we could have chosen other strings for w. For example, let w =
ba'ba. But then there are additional choices for what y could be (since y could include the initial b) and we
would have to work through them all.

(o) L ={ww':w [{a b}*}, where w' stands for w with each occurrence of areplaced by b, and vice versa.
We can prove this easily using the pumping lemma. Letw = a'b". Since [xy| < N, y must be astring of all a's.
So, when we pump (either in or out), we modify the first part of w but not the second part. Thus the resulting
stringisnotinlL.

We could also solve this problem just by observing that, if L isregular, soisL' =L n ab*. ButL'isjustab",
which we have aready shown isnot regular. ThusL isnot regular either.

2.(a) L ={w : wisthe unary notation for a natural number that isamultiple of 7}. L isregular sinceit can be
described by the regular expression (1111111)*.

Homework 9 Languages That Are and Are Not Regular 2

(b) L ={w : w isthe decimal notation for a natural number that is a multiple of 7}. L isregular. We can
build a deterministic FSM M to accept it. M is based on the standard algorithm for long division. The states
represent the remainders we have seen so far (so there are 7 of them, corresponding to 0 — 6). The start state, of
course, is 0, corresponding to aremainder of 0. So isthefinal state. The transitions of M are asfollows:

OsO{0-6} andJc O{0-9}, s, ¢) = (10s + ¢) mod 7
So, for example, on the input 962, M would first read 9. When you divide 7 into 9 you get 1 (which we don’t
care about since we don't actually care about the answer — we just care whether the remainder is 0) with a
remainder of 2. So M will enter state 2. Next it reads 6. Since it isin state 2, it must divide 7 into 2*10 +6
(26). It gets aremainder of 5, so it goesto state 5. Next it reads 2. Sinceit isin state 5, it must divide 7 into
5*10 + 5 (52), producing a remainder of 3. Since 3 is not zero, we know that 862 is not divisible by 7, so M
rejects.

(c) L ={w : wisthe unary notation for a natural number such that there exists a pair p and q of twin primes,
both>n.}. L isregular. Unfortunately, thistime we don’'t know how to build a PDA for it. We can, however,
prove that it is regular by considering the following two possibilities:

(1) Thereis an infinite number of twin primes. In this case, for every n, there exists a pair of twin primes
greater than n. ThusL = 1*, which isclearly regular.

(2) Thereis not an infinite number of twin primes. In this case, there is some largest pair. There is thus
also alargest n that has a pair greater than it. Thus the set of such n’sisfinite and so isL (the unary
encodings of those values of n). Since L isfinite, itisclearly regular.

It is not known which of these cases is true. But interestingly, from our point of view, it doesn’'t matter. L is
regular in either case. It may bother you that we can assert that L is regular when we cannot draw either an
FSM or aregular expression for it. It shouldn’'t bother you. We have just given a nonconstructive proof that L
is regular (and thus, by the way, that some FSM M accepts it). Not all proofs need to be constructive. This
situation isn’t realy any different from the case of L' ={w : w is the unary encoding of the number of siblings
| have}. You know that L' is finite and thus regular, even though you do not know how many siblings | have
and thus cannot actually build amachineto accept L'.

(d) L ={w : wis, for somen = 1, the unary notation for 10"}. So L ={1111111111, 1'®, 1'°° . }. Lisn't
regular, since clearly any machine to accept L will have to count the 1's. We can prove this using the pumping
lenma: Let w = 1", N < P and P is some power of 10. y must be some number of 1's. Clearly, it can be of
length at most P. When we pump it in once, we get a string s whose maximum length is therefore 2P. But the
next power of 10is10P. Thusscannot beinL.

(e L ={w : wis, for some n > 1, the decimal notation for 10"}. Often it's easier to work with unary
representations, but not inthiscase. ThisL isregular, sinceit isjust 100*.

(f) L ={w isof theform x#y, where x, y 0 {1} " and y = x+1 when x and y are interpreted as unary numbers}
(For example, 11#111 and 1111#11111 0 L, while 11#11, 1#111, and 1111 00 L.) L isn'tregular. Intuitively, it
isn’t regular because any machine to accept it must count the 1's before the # and then compare that number to
the number of 1's after the #. We can prove that this is true using the pumping lemma: Let w = 1"#1"**. Since
[xy] £ N, y must occur in the region before the #. Thus when we pump (either in or out) we will change x but
not make the corresponding changetoy, so y will no longer equal x +1. Theresulting stringisthusnotinL.

()L ={ab: |n—j|=2}. Lisn'tregular. L consistsof all strings of the form a*b* where either the number
of asistwo more than the number of b's or the number of b’'s is two more than the number of a's. We can

show that L is not regular by pumping. Let w = a'b™*% Since [xy| < N, y must equal & for some p > 0. We can
pump y out once, which will generate the string & "b™*? whichisnot in L.

Homework 9 Languages That Are and Are Not Regular 3

(h) L ={uww"v :u,v,w O{a b}+}. L isregular. Thismay seem counterintuitive. But any string of length
at least four with two consecutive symbols, not including the first and the last ones, isin L. We simply make
everything up to the first of the two consecutive symbolsu. Thefirst of the two consecutive symbolsisw. The
second is W®. And the rest of the string isv. And only strings with at least one pair of consecutive symbols
(not including the first and last) arein L because w must end with some symbol s. w® must start with that same
symbol s. Thus the string will contain two consecutive occurrences of s. L is regular because it can be
described the regular expression (a b)* (aa 0 bb) (a b)".

() L ={w {a b}* : for each prefix x of w, #a(x) = #b(x)}. First we need to understand exactly what L is.
In order to do that, we need to define prefix. A string x isa prefix of astringy iff [z [0 ¥* such that y = xz. In
other words, x is a prefix of y iff x isan initial substring of y. For example, the prefixes of abba are €, a, ab,
abb, and abba. So L is all strings over {a, b}* such that, at any point in the string (reading left to right), there
have never been more b’sthan a's. The strings €, a, ab, aaabbb, and ababaarein L. The strings b, ba, abba, and
ababb are not in L. L is not regular, which we can show by pumping. Let w = a'b". Soy = &, for some
nonzero p. If we pump out, there will be fewer a sthan b’'sin the resulting string s. So sisnot in L since every
string is a prefix of itself.

3. (a) Every subset of aregular language is regular. FALSE. Often the easiest way to show that a universally
quantified statement such as this is false by showing a counterexample. So consider L = a. L is clearly
regular, since we have just shown a regular expression for it. Now consider L' = d: i isprime. L' O L. But we
showed in classthat L' is not regular.

(b) Let L' =L1 n L2 If L"isregular and L2 is regular, L1 must be regular. FALSE. We know that the
regular languages are closed under intersection. But it isimportant to keep in mind that this closure lemma (as
well as all the others we will prove) only says exactly what it says and no more. In particular, it says that:

If L1isregular and L2 isregular
ThenL'isregular.

Just like any implication, we can’t run this one backward and conclude anything from the fact that L' is regular.
Of course, we can’'t use the closure lemma to say that L1 must not be regular either. So we can’'t apply the
closure lemma here at all. A rule of thumb: it is almost never true that you can prove the converse of a closure
lemma. So it makes sense to look first for a counterexample. Wedon't havetolook far. LetL'=[. LetL2=
0. SoL'and L2 areregular. Now let L1 ={d:iisprime}. L1lisnotregular. YetL'=L1 n L2. Notice that
we could have made L2 anything at all and its intersection with [0 would have been J. When you are looking
for counterexamples, it usually works to look for very simple ones such as [or >2*, so it's a good idea to start
there first. [0 works well in this case because we're doing intersection. >* is often useful when we're doing
union.

(c) If Lisregular,thensoisL'={xy:xOLandy OL}. TRUE. Proof: Sayingthaty [JL isequivaentto
saying that y O L. Since the regular languages are closed under complement, we know that L isalso regular. L’
is thus the concatenation of two regular languages. The regular languages are closed under concatenation.
Thus L' must be regular.

(d) L ={w:w =w"} isregular. FALSE. L is NOT regular. You can prove this easily by using the
pumping lemmaand letting w = a“bal".

(e) If L isaregular language, then soisL' ={w:w O L andw" OL}. TRUE. Proof: Sayingthatw®OL is

equivalent to saying that w O L®. If w must bein both L and L¥, that is equivalent to saying that L' = L n LF.
L isregular because the problem statement says so. L™ is also regular because the regular languages are closed

Homework 9 Languages That Are and Are Not Regular 4

under reversal. The regular languages are closed under intersection. So the intersection of L and L* must be
regular.

Proof that the regular languages are closed under reversal (by construction): If L is regular, then there exists
some FSM M that acceptsit. From M, we can construct anew FSM M’ that accepts LR, M’ will effectively run
M backwards. Start with the states of M’ equal to states of M. Take the state that corresponds to the start state
of M and make it the final state of M'. Next we want to take the final states of M and make them the start states
of M'. But M' can have only a single start state. So create a new start state in M" and create an epsilon
transition from it to each of the statesin M’ that correspond to final states of M. Now just flip the arrows on all
the transitions of M and add these new transitionsto M'.

(f) If Cisany set of regular languages, LIC is a regular language. FALSE. If Cis afinite set of regular
languages, thisistrue. It follows from the fact that the regular languages are closed under union. But suppose
that C is an infinite set of languages. Then this statement cannot be true. If it were, then every language would
be regular and we have proved that there are languages that are not regular. Why is this? Because every
language is the union of some set of regular languages. Let L be an arbitrary language whose elements are wy,
Wy, W3, Let C bethe set of singleton languages {{wa}, {wy}, {ws}, ... } such that w; [0 L. The number of
elements of Cisequal to the cardinality of L. Each individual element of C is alanguage that contains asingle
string, and so it isfinite and thus regular. L = [1C. Thus, since not all languages are regular, it must not be the
case that [IC is guaranteed to be regular. If you're not sure you follow this argument, you should try to come
up with a specific counterexample. Choose an L such that L is not regular, and show that it can be described as

[1C for some set of languages C.

(9) L = {xyx":x,y O=*} isregular. TRUE. Why? We ve aready said that xx~ isn’t regular. Thislooks a
lot like that, but it differsin akey way. L isthe set of strings that can be described as some string x, followed
by some string y (where x and y can be chosen completely independently), followed by the reverse of x. So, for
example, it is clear that abcceecba O L (assuming = ={a, b, ¢}). Welet x = ab, y = cccee, and x¥ = ba. Now
consider abbcccccaaa. Y ou might think that this stringisnotinL. Butitis. Welet x = a, y = bbcccecaa, and
xR =a What about accch? This string too isin L. Welet x = €, y = acceb, and x® = €. Note the following
things about our definition of L: (1) Thereis no restriction on the length of x. Thuswe can let x =¢€. (2)There
is no restriction on the relationship of y tox. And (3) e¥=¢. ThusL isin fact equal to >* because we can take
any stringw in =* and rewriteit as€ w €, which is of the form xyx®. Since Z* isregular, L must be regular.

(h) If L' = L1 0 L2 isaregular language and L1 is a regular language, then L2 is a regular language.
FALSE. Thisisanother attempt to use a closure theorem backwards. Let L1 =3*. L1lisclearly regular. Since
L1 contains all strings over %, the union of L1 with any language isjust L1 (i.e., L' = ¥*). If the proposition
were true, then all languages L2 would necessarily be regular. But we have already shown that there are
languages that are not regular. Thus the proposition must be false.

(i) Every regular language has a regular proper subset. FALSE. [isregular. And it is subset of every set.
Thusit is a subset of every regular language. However, it isnot aproper subset of itself. Thusthis statement is
false. However the following two similar statements are true:

(1) Every regular language has a regular subset.
(2) Every regular language except [1 has aregular proper subset.

() If L1 and L2 are nonregular languages, then L1 0 L2 isalso not regular. False. Let L1 ={adbh™, n=>m}
andL2={adb™, n<m}.L10L2=a*b*, whichisregular.

Homework 9 Languages That Are and Are Not Regular 5

4. If L wereregular, then its complement, L,, would also be regular. L, contains all strings over {a, b} that are
not in L. There are two ways not to be in L: have any as that occur after any b's (in other words, not have all
the asfollowed by all the b's), or have an equal number of asand b's. So now consider

L,=L; n ab*
L, contains only those elements of L, in which the as and b'sare in the right order. In other words,

L,= ab"
But if L were regular, then L; would be regular. Then L,, since it is the intersection of two regular languages
would also be regular. But we have already shown that it (a'h") is not regular. Thus L cannot be regular.

5. This statement isfalse. To proveit, we offer a counter example. Let L, ={adh™: n=m} and let L, =
{a'b™: n#m}. We have shown that both L, and L, are not regular. However,
L, O L,=a*b*, whichisregular.
There are plenty of other examplesaswell. LetL;={d.n>1andnisprime}. LetL,= {ad“ n>1andnisnot
prime}. Neither Ly nor Lyisregular. ButL; O L,=a’, whichisclearly regular.

6. This is easy to prove using the pumping lemma. Let w = a'ba'ba. We know that xy must be contained
within the first block of as. So, no matter how y is chosen (as long as it is not empty, as required by the
lemma), for any i > 2, xyiz 0 L, since the first block of as will be longer than the last block, which is not
allowed. ThereforeL isnot regular.

7. First, let L' = L n a*b*, which must be regular if L is. We observe that L' = a8'b™?: n> 0. Now use the
pumping lemmato show that L' is not regular in the same way we used it to show that ah" is not regular.

8. We use the pumping lemma. Let w = &"b". xy must be contained within the block of a's, so when we pump
either in or out, it will no longer be true that there will be twice as many as as b's, since the number of as
changes but not the number of b's. Thus the pumped string will not bein L. Therefore L isnot regular.

9. (a) L isnot regular. We can prove this using the pumping lemma. Let w = a*b". Since'y must occur within
the first N characters of w, y = & for some p > 0. Thus when we pump y in, we will have more asthan b's,
which produces strings that are not in L.

(b) L* isaso not regular. To prove this, we need first to prove alemma, which we'll call EQAB: [s, s [
L* = #a(s) = #b(s). To prove the lemma, we first observe that any string s in L* must be able to be
decomposed into at least one finite sequence of strings, each element of which isin L. Some strings will have
multiple such decompositions. In other words, there may be more than one way to form s by concatenating
together stringsin L. For any string sin L*, let SQ be some sequence of elements of L that, when concatenated
together, form s. It doesn't matter which one. Define the function HowMany on the elements of L*.
HowMany(x) returns the length of SQ. Think of HowMany as telling you how many times we went through the
Kleene star loop in deriving x. We will prove EQAB by induction on HowMany(s).

Base case: If HowMany(s) = O, then s= €. #a(s) = #b(s).
Induction hypothesis: If HowMany(s) < N, then #a(s) = #b(s).
Show: If HowMany(s) = N+1, then #a(s) = #b(9).

If HowMany(s) = N+1, then 0w,y such that s=wy, w [0 L*, HowMany(w) = N, and y [J L. In other words,
we can decompose s into a part that was formed by concatenating together N instances of L plus a second part
that isjust one more instance of L. Thuswe have:

Homework 9 Languages That Are and Are Not Regular 6

(1) #a(y) = #o(y). Definition of L

(2) #a(w) = #b(w). Induction hypothesis

(3) #a(s) = #a(w) + #a(y) s=wy

(4) #b(s) = #b(w) + #b(y). s=wy

(5) #b(s) = #a(w) + #b(y) 4,2

(6) #b(s) = #a(w) + #a(y) 51

(7) #b(s) = #a(s) 6,3 Q.E.D.

Now we can show that L* isn’'t regular using the pumping lemma. Let w = d'b". Since y must occur within the
first N characters of w, y = & for some p > 0. Thus when we pump y in, we will have a string with more a's
than b’'s. By EQAB, that string cannot bein L*.

Homework 9 Languages That Are and Are Not Regular 7

CS 341 Homework 10
State Minimization

1. (a) Give the equivalence classes under =, for these languages:
(i) L=(aab0O ab)*
(i) L ={x: x contains an occurrence of aababa}
(iii) L ={xx?:xO{a b}*}
(iv) L={xx:x0O{a b}*}
(v) L,={a b}a{a b}", wheren> 0isafixed integer
(vi) The language of balanced parentheses
(b) For those languages in (@) for which the answer isfinite, give a deterministic finite automaton with the smallest number
of states that accepts the corresponding language.

2.LetL ={x0O{a b}* : x contains at least one aand endsin at |east two b's}.
(a) Write aregular expression for L.
(b) Construct a deterministic FSM that acceptsL.
(c) Let R, be the equivalence relation of the Myhill-Nerode Theorem. What partition does R, induce on the set
{a, bb, bab, abb, bba, aab, abba, bbaa, baaba} ?
(d) How many equivalence classes are there in the partition induced on * by R, ?

3.LetL ={x0O{a b}*: x beginswith aand endswith b}.

(a) What isthe nature of the partition induced on >2* by R, the equivalence relation of the Myhill-Nerode Theorem? That
is, how many classes are there in the partition and give a description of the stringsin each.

(b) Using these equivalence classes, construct the minimum state deterministic FSM that acceptsL.

4. Suppose that we are given alanguage L and a deterministic FSM M that acceptsL. AssumelL isasubset of {a, b, c}*. Let
R, and Ry, be the equivalence relations defined in the proof of the Myhill-Nerode Theorem. True or False:

(a) If we know that x and y are two strings in the same equivalence class of R, we can be sure that they are in the same
equivalence class of Ry.

(b) If we know that x and y are two strings in the same equivalence class of Ry, we can be sure that they are in the same
equivalence class of R, .

(c) There must be at least one equivalence class of R, that has contains an infinite number of strings.

(d) Ry induces a partition on { a, b, c}* that has afinite number of classes.

(e) If e O L, then [€] (the equivalence class containing €) of R, cannot be an infinite set.

5. Use the Myhill-Nerode Theorem to prove that { 8'b™c™ ™ bPd : m, n, p = 0} is not regular.

6. (a) In classwe argued that the intersection of two regular languages was regular on the basis of closure properties of
regular languages. We did not show a construction for the FSM that recognizes the intersection of two regular languages.
Such a construction does exist, however, and it is suggested by thefact that L; n L, =>* - (Z* - Ly) O (Z* - Ly)).

Given two deterministic FSMs, M; and M, that recognize two regular languages L ; and L ,, we can construct an FSM that

recognizesL =L, n L, (in other words strings that have all the required properties of both L, and L,), as follows:

1. Construct machines M;' and M>', as deterministic versions of M; and M. This step is necessary because complementation
only works on deterministic machines.

2. Construct machines M;" and M,", from M;" and M5, using the construction for complementation, that recognize >* - L,
and Z* - L,, respectively.

3. Construct M3, using the construction for union and the machines M;" and M.,", that recognizes
((=* - Ly O (Z* - Ly)). Thiswill be anondeterministic FSM.

4. Construct My, the deterministic equivaent of M.

5. Construct M|, using the construction for complementation, that recognizes * - ((Z* - L,) O (Z* - Ly)).

Now consider: > ={a b}

L, ={w O Zz* : al asoccur in pairs} e.g., aa, aaaa, aabaa, aabbaabbb [0 L,
aag, baaab, ab 0 L4

Homework 10 State Minimization 1

L, ={w O Z* : w contains the string bbb}
Use the procedure outlined above to construct an FSM M that recognizesL =L; n L,.
Is M guaranteed to be deterministic?
(b) What are the equivalence classes under = for thelanguageL =L, n L,?
(c) What are the equivalence classes under ~, for M, in (@) above?
(d) Show how ~, isarefinement of = .

(e) Use the minimization algorithm that we have discussed to construct from M in (a) above a minimal state machine that
acceptsL.

7. 1f you had trouble with this last one, make up another pair of L, and L, and try again.
Solutions

1. (a)
() L =(aab O ab)*
1. [, aab, ab, and all other elements of L]
2. [aorwa:wL]
3.[aaorwaa:w L]
4. [everything elsg, i.e., strings that can never become elements of L because they contain illegal
substrings such as bb or aad]
(if) L ={x : scontains an occurrence of aababa}
1. [(aO b)*aababa(a 0 b)*, i.e., al elements of L]
2. [g or any string not in L and ending in b but not in aab or aabab, i.e., no progress yet on
"aababa']
3. [wafor any w [0 [2]; alternatively, any string not in L and ending in a but not in aa, aaba, or
aababa)
4. [any string not in L and ending in aa]
5. [any string not in L and ending in aab]
6. [any string not in L and ending in aaba]
7. [any string not in L and ending in aabab]
Note that thistime thereis no "everything else”. Strings never become hopelessin this
language. They simply fail if we get to the end without finding "aababa’.
(L = o x O {a b}*}
1. [a, which isthe only string for which the continuations that lead to acceptance are all strings of
theformwa: wherew [0 L]
2. [b, which isthe only string for which the continuations that lead to acceptance are all strings of
the form wb : wherew [0 L]
3. [ab, which isthe only string for which the continuations that |ead to acceptance are all strings
of the formwba: wherew [L]
4. [aa, which isthe only string for which the continuations that |ead to acceptance are all strings
of the formwaa : wherew [0 L]
And so forth. Every stringisin adistinct equivalence class.
(iv)L={xx:x0O{a b}*}
1. [a, which isthe only string for which the continuations that lead to acceptance are all strings
that would bein L except that they are missing aleading a)
2. [b, which isthe only string for which the continuations that |ead to acceptance are all strings
that would bein L except that they are missing aleading b]
3. [ab, which isthe only string for which the continuations that |ead to acceptance are all strings
that would bein L except that they are missing aleading ab]

Homework 10 State Minimization

4. [aa, which isthe only string for which the continuations that lead to acceptance are al strings
that would bein L except that they are missing aleading a3
And so forth. Every stringisin adistinct equivalence class.
(v) Ln={a b}a{a b}"
0. [g]
1.[a b]
2. [aa, bal
3. [aaa, aab, baa, bab]

n+2. [(a0 b)aad b)"

n+3. [strings that can never become elements of L]

There isafinite number of stringsin any specific language L,,. So thereis afinite number of equivalence classes of
=.. Every string in L, must be of length n+2. So there are n+3 equivalence classes (numbered 0 to n+2, to indicate the length
of the strings in the class) of strings that may become elements of L, plus one for strings that are already hopeless, either
because they don't start with ab or aa, or because they are aready too long.

(vi) L = The language of balanced parentheses

1. [wr(w*:w L] /* i.e., one extra left parenthesis somewhere in the string

2. [wr((w* :w L] [* two “

3. [wr(((w* :w L]

4. [w*((((w* :w O L]

5. [w* (((((w* : w O L]

... and so on. Thereisan infinite number of equivalence classes.

Each of these classesis distinct, since) is an acceptable continuation for 1, but none of the others;)) is acceptable for
2, but none of the others,))) is acceptable for 3, but none of the others, and so forth.

1. (b)
Q)

(i) There's always a very simple nondeterministic FSM to recognize al strings that contain a specific substring. It'sjust a
chain of states for the desired substring, with loops on al letters of > on the start state and the final state. In this case, the
machineis:

b\LZ a ®a)@b @a ><(_5>b)@ab
a,

To construct aminimal, deterministic FSM, you have two choices. Y ou can use our algorithm to convert the NDFSM to a
deterministic one and then use the minimization algorithm to get the minimal machine. Or you can construct the minimal
FSM directly. Inany case, itis:

Homework 10 State Minimization 3

(iii) Thereisno FSM for this language, sinceit is not regular.

(iv) Thereisno FSM for thislanguage, sinceit is not regular.

(v)

(vi) Thereisno FSM for thislanguage, sinceit is not regular.

2.(a) (0 by*a@l by*bbb* or (all b)*a@ll b)* bb

(b)
b a

o
v

7

(c) It'seasiest to answer (d) first, and then to consider (c) as a special case.
(d) [0] = all strings that contain no a
[1] = al stringsthat end with a
[2] = @l strings that end with ab
[3] = al stringsthat contain at |east one aand that end with bb, i.e,, all stringsin L.
It is clear that these classes are pairwise digjoint and that their unionis{a, b}*. Thusthey represent a partition of {a, b} *. It
isalso easy to see that they are the equivalence classes of R, of the Myhill-Nerode Theore, since all the members of one
equivalence class will, when suffixed by any string z, form strings al of which arein L or al of whicharenotinL. Further,
for any x and y from different equivalence classes, it is easy to find az such that one of xz, yz isin L and the other is not.

Letting the equivalence relation R, be restricted to the set in part (c), gives the partition

Homework 10 State Minimization 4

3. (@ [1={g (b) N a
[2] =b(al b)* 1 ° a
[3] =a O ala b)*a
[4] = a(a 0 b)*b b b

o=
ab

4. (@) F, (b) T, (c) T (Z* isinfinite and the number of equivalence classesisfinite), (d) T, (e) F.

5. Choose any two distinct strings of as: call them d and d (i <j). Then they must bein different equivalence classes of R,
sinceab'c O L but ab'c' O L. Therefore, there is an infinite number of equivalence classes and L is not regular.

6.(@) My, whichrecognizesL,, is:

ab

\D
(o
N

Step (1) M;' = M because M1 is deterministic.
M,' = M, because M2 is deterministic.

Step (2) M;"isM;' except that states 3 and 4 are the final states.
M," is M, except that states 5, 6, and 7 are the final states.

Step (3) Msis:

Homework 10 State Minimization

Step (4) Myis:

{1,2,5},a{3,5) {2,5,2,{3 5 {4,5),28,{4,5) {4, 8},8{4,8)
b, {2, 6} b, {2, 6} b, {4, 6} b, {4, 8}
{3.5},a{25} {4,6},a{4,5 {4, 7}, 8,{4,5} {3.8,a{28
b, {4, 6} b, {4, 7} b, {4, 8} b, {4, 8}
{2,6},a {35} {2, 7},a {35 {2.8,a{3 8}
b, {2, 7} b, {2, 8} b, {2, 8}
={1,2,5}
F=K-{2,8},i.e, al statesexcept { 2, 8} arefinal states.

Y ou may find it useful at this point to draw this out.
Step (5) M| = M, except that now thereisasingle final state, {2, 8}.

M_ isdeterministic. My is deterministic by construction, and Step 5 can not introduce any nondeterminism since it doesn't
introduce any transitions.

(b) 1. [strings without bbb and with any asin pairs, including €]
2. [strings without bbb but with a single a at the end)]
3. [strings that cannot be made legal because they have asingle afollowed by a b]
4. [strings without bbb, with any asin pairs, and ending in asingle b]
5. [strings without bbb, with any asin pairs, and ending with just two b's]
6. [strings with bbb and with any dsin pairs]
7. [strings with bbb but with a single a at the end]

(© {1,2 5} (€]

{3, 5} [strings without bbb but with a single a at the end]

{2, 6} [strings without bbb, with any asin pairs, and ending in asingle b]

{2, 5} [strings without bbb and with at least one pair of a'sand any a'sin pairg|

{4, 6} [strings that cannot be made legal because they have asingle afollowed by ab
and where every b is preceded by an a and the last character is b]

{2, 7} [strings without bbb, with any a'sin pairs, and ending with just two b's]

{4, 5} [strings that cannot be made legal because they have a single afollowed by b
and where there is no bbb and the last character is g

{4, 7} [strings that cannot be made legal because they have asingle afollowed by ab
and where there is no bbb but there is at least one bb and the last
character isb]

{2, 8} [al stringsinL]

{4, 8} [strings that cannot be made legal because they have asingle afollowed by ab
and where there is a bbb, but the ab violation came before the first bbb]

{3, 8} [strings with bbb but with a single a at the end]

(d) {1,2,5 0{25} =1

{3,5y =2

{4,6}0{4,5,0{4,770{4,8 =3

{2,6} =4

{2, 7} =5

{2,8} =6

{3,8=7

Homework 10 State Minimization

(€) =0=A:[{2,8}],
B:[{1,2,5},{2,5},{3,5},{4,6},{4,5},{4,7},{4,8},{2,6},{2,7},{3, 8}]
To compute =;: Consider B (since clearly A cannot be split). We need to look at all the single character transitions out of
each of these states. We've already done that in Step (3) of part (a) above, so we can use that table to tell us which of our
current states each state goesto. Now we just need to use that to determine which element of =, they go to. We notice that all
transitions are to elements of B except: ({2, 7}, b, A) and ({3, 8}, a, A). So we must split these two states from B. and they
must be distinct from each other because their aand b behaviors are reversed. So we have:
= =A[{2 8],
B:[{1,2,5},{2,5},{3,5},{4,6},{4,5},{4, 7},{4, 8},{2, 6}]
C:[{2,7}]
D: [{3, 8}]
To compute =,: Again we consider B:
Onreading an a, al elements of B go to elements of B.
But on b: ({2, 6}, b, C), so we must split off {2, 6}. Thisgivesus:
==A:[{28}],
B:[{1,2,5},{2,5},{3,5},{4,6},{4,5},{4, 7}, {4, 8}]
C:[{2,7}]
D: [{3, 8}]
E: [{2, 6}]
To compute =3: Again we consider B:
Onreading an a, al elements of B go to elements of B.
Butonb, {1, 2, 5} and {2, 5} go to E, while everyone else goesto B. So we have to split these two off. Thisgives us:
==A:[{2 8}],
B:[{3,5},{4 6}.{4,5},{4, 7}, {4 8}]
C:[{2,7}]
D: [{3, 8}]
E: [{2, 6}]
F:[{1,2,5},{2 5}]
To compute =4: Again we consider B:
Onreading b, al elements of B stay in B. But on reading a, {3, 5} goesto F, so we split it off. Thisgivesus:
= =A:[{2 8}],
B: [{4,6},{4.5},{4,7},{4, 8}]
C:[{2,7}]
D: [{3, 8}]
E: [{2, 6}]
F:[{1,2,5},{2 5}]
G: [{3, 5}]
To compute =s: Again we consider B: On both inputs, al elements of B stay in B. So we do no further splitting, and we
assert that = = =4. Notice that thisisidentical to what we expected from (d) above.

Homework 10 State Minimization 7

We can now show the minimal machine:

Homework 10

State Minimization

ab

CS 341 Homework 11
Context-Free Grammars

1. Consider the grammar G = (V, %, R, S), where
V={ab, S A}
z ={a b},
R={ S AA,
A - AAA,
A -3
A - DA,
A - Ab }.
(&) Which strings of L(G) can be produced by derivations of four or fewer steps?
(b) Give at least four distinct derivations for the string babbab.
(c) For any m, n, p > 0, describe aderivation in G of the string b™ab"ab’.

2. Construct context-free grammars that generate each of these languages:
(@) {wew®: w O {a, b}*}
(b) {ww®: w O {a, b}*}
(©{wO{a b}*:w=w"}

3. Consider thealphabet 2 ={a, b, (,), U, *, J}. Construct a context-free grammar that generates all stringsin
>* that are regular expressions over {a, b}.

4. Let G be a context-free grammar and let k > 0. Welet L (G) [L(G) be the set of all strings that have a
derivation in G with k or fewer steps.

(a) What isLs(G), whereG=({S,(,)},{(,)},{S-¢S-S5S - (9})?

(b) Show that, for al context-free grammars G and all k > 0, L(G) isfinite.

5LetG= (V,Z,R,S), where
V={ab, S},
z ={a b},
R={ S - aSh,
S - aSa,
S - bSa,
S - bSh,
S-¢l.
Show that L(G) isregular.

6. A programin a procedural programming language, such as C or Java, consists of alist of statements, where
each statement is one of several types, such as:

(1) assignment statement, of the formid := E, where E is any arithmetic expression (generated by the grammar
using T and F that we presented in class).

(2) conditional statement, e.g., "if E < E then statement", or while statement , e.g. "while E < E do statement".

(3) goto statement; furthermore each statement could be preceded by alabel.

(4) compound statement, i.e., many statements preceded by a begin, followed by an end, and separated by ";".
Give a context-free grammar that generates all possible statements in the simplified programming language
described above.

7. Show that the following languages are context free by exhibiting context-free grammars generating each:
(@ {ad™": m=n}

Homework 11 Context-Free Grammars 1

(b) {d""c”d*: m+n=p+q}
(c) {w O {4, b}* : w hastwice as many b's as as}
(d) {uawb : u, w O {a&, b}*, |u| = w[}

8. Let> ={a b, c}. LetL bethelanguage of prefix arithmetic defined as follows:
(i) any member of Z isawell-formed expression (wff).
(if) if a and 3 are any wff's, then so are Aaf3, Saf3, Maf3, and Da3.
(iii) nothing else is a wff.
(One might think of A, S, M, and D as corresponding to the operators +, -, %, /, respectively. Thusin L we could
write Aab instead of the usual (a + b), and MSabDbc, instead of ((a - b) x (b/c)). Note that parentheses are
unnecessary to resolve ambiguitiesin L.)
(a) Write a context-free grammar that generates exactly the wif's of L.
(b) Show that L is not regular.

9. Consider the language L = {@™?"'c*d”: p>m, andm, n= 1}.
(&) What is the shortest stringin L?
(b) Write a context-free grammar to generate L.

Solutions

1. (a) We can do an exhaustive search of all derivations of length no more than 4:
S>AA>aA>aa
S=>AA = aA = abA = aba
S=>AA = aA > aAb= adb
S= AA = bAA = baA = baa
S= AA = bAA = bAa= bhaa
S= AA = AbA = abA = aba
S= AA = AbA = Aba— aba
S>AA>Aa—aa
S= AA = Aa= bAa= baa
S= AA = Aa= Aba= aba
S= AA = AbA = abA = aba
S= AA = AbA = Aba— aba
S= AA = AAb= aAb= aab
S= AA= AAb= Adb = aab
Many of these correspond to the same parse trees, just applying the rulesin different orders. In any case, the
strings that can be generated are: aa, aab, aba, baa.

(b) Noticethat A = bA = bAb = bab, and also that A = Ab = bAb = bab. This suggests 8 distinct

derivations:

S= AA = AbA = AbAb = Abab =* babbab

S= AA = AAb = AbAb = Abab =* babbab

S= AA = bAA = bAbA = babA =* babbab

S= AA = AbA = bAbA = babA =* babbab
Where each of these four has 2 ways to reach babbab in the last steps. And, of course, one could interleave the
productions rather than doing all of thefirst A, then all of the second A, or vice versa.

(c) Thisisamatter of formally describing a sequence of applications of the rulesin terms of m, n, p that will
produce the string b™ab"ab®.
S
=/*byrueS - AA */

Homework 11 Context-Free Grammars 2

AA
=* [* by mapplications of rule A - bA */

bTAA
= /*byruleA - a */
b"aA
=* [* by napplications of rule A - bA */
bMab"A
=* by p applicationsof ruleA - Ab */
bMab"Ab®
= [*byruleA - a */
bMab"ab”

Clearly this derivation (and some variations on it) produce b™ab"ab® for each m, n, p.

2@G=(V,Z,R,9withV={S ab,c},2={ab,c,R={

S - aSa
S - bSb
S-c }.

(b) Same as (a) except remove c fromV and X and replacethelast rule, S - ¢, by S - €.

(c) This language very similar to the language of (b). (b) was all even length palindromes; this is all
palindromes. We can use the same grammar as (b) except that we must add two rules:
S-a
S-b

3. Thisiseasy. Recall the inductive definition of regular expressions that was givenin class:
1. 0 and each member of X isaregular expression.
2.1f a, B areregular expressions, then so is a3
3.If a, B areregular expressions, then soisalp .
4. 1f a isaregular expression, then so isa*.
5. 1f a isaregular expression, then sois (a).
6. Nothing elseisaregular expression.
This definition provides the basis for a grammar for regular expressions:

G=(V,Z,R,9withV={S ab()0*0}Z={ab ()0 * 0O}, R={

S-. 0O [* part of rule 1, above

S-a I* "

S-b I* "

S- SS I* rule2

S-SOdSs [* rule 3

S & * rule4

S (9 [* rule5 }

4. (a) We omit derivations that don't produce stringsin L (i.e, they still contain nonterminals).
Li:S=>¢

L,:S= (9 =()
L;:S=S5=¢eS=¢
5= (9= ((9) = (0)
Ls:S=S5= (9S=()S=()
S=>SS=89 =9 =)
S= (9 = ((5) = (9 = (0))
Ls:S=S5=(95= (9 = 09 =00

Homework 11 Context-Free Grammars 3

S=S5=(9S=((9)s=(0)S=(0)

S= (5 =((9) = (((9)) = (((9)) = (((0))
SoLs={g (), (0), ((0), (((O), 00 }

(b) We can give a (weak) upper bound on the number of stringsin Lx(G). Let P be the number of rulesin G
and let N be the largest number of nonterminals on the right hand side of any rule in G. For the first derivation
step, we start with S and have P choices of derivationsto take. So at most P strings can be generated. (Generally
there will be many fewer, since many rules may not apply, but we're only producing an upper bound here, so
that's okay.) At the second step, we may have P strings to begin with (any one of the ones produced in the first
step), each of them may have up to N nonterminals that we could choose to expand, and each nonterminal could
potentially be expanded in Pways. So the number of strings that can be produced is PxNxP. Note that many of
them aren't strings in L since they may still contain nonterminals, but this number is an upper bound on the
number of stringsin L that can be produced. At the third derivation step, each of those strings may again have N
nonterminals that can be expanded and P ways to expand each. In general, an upper bound on the number of
strings produced after K derivation steps is PXN®®, which is clearly finite. The key here is that there is a finite
number of rules and that each rule produces a string of finite length.

5. We will show that L(G) is precisely the set of all even length strings in {a, b}*. But we know that that
languageisregular. QED.

First we show that only even length strings are generated by G. Thisis trivial. Every rule that generates any
terminal characters generates two. So only strings of even length can be generated.

Now we must show that all strings of even length are produced. This we do by induction on the length of the
strings:
Base case: € U Lg (by application of the last rule). So we generate the only string of length O.

Induction hypothesis: All even length strings of length < N (for even N) can be generated from S.

Induction step: We need to show that any string of length N+2 can be generated. Any string w of length N + 2 (N
> 0) can be rewritten as xyz, where x and z are single characters and |y| = N. By the induction hypothesis, we
know that all values of y can be generated from S. We now consider al possible combinations of values for x
and z that can be used to create w. There are four, and the first four rulesin the grammar generate, for any string
T derivable from S, the four strings that contain T plus a single character appended at the beginning and at the
end. Thusall possible stringsw of length N+2 can be generated.

6. Since we already have a grammar for expressions (E), well just use E in this grammar and treat it as though it
were aterminal symbol. Of course, what we really have to do is to combine this grammar with the one for E. As
we did in our grammar for E, we'll use the terminal string id to stand for any identifier.
G=(V,Z,R,9§,whereV={S,U,C L, TE :;=<>;azid},2={:,=<>; &z id}, and
R={
S-LU [* astatement can be alabel followed by an unlabeled statement
S-U [* or a statement can be just an unlabeled statement. We need to
make the distinction between Sand U if we want to prevent a
statement from being preceded by an arbitrary number of labels.

U-id:=E [* assignment statement
U-IifETEthenS [* if statement

U - whileETEdoS /* while statement

U - gotolL [* goto statement

U - beginS; Send /* compound statement

L - id [* alabel isjust an identifier

Homework 11 Context-Free Grammars 4

T- <|>]|= /* weuse T to stand for atest operator. We introduce the | (or) notation
here for convenience. }
There's one problem we haven't addressed here. We have not guaranteed that every label that appears after a goto
statement actually appears in the program. In general, this cannot be done with a context-free grammar.

7.(@ L ={d™™: m=n}. Thisoneis very similar to Example 8 in Supplementary Materials. Context-Free
Languages and Pushdown Automata: Designing Context-Free Grammars. The only difference isthat in that case,
m<n. Soyou can use any of the ideas presented there to solve this problem.

(b) L = {d™"c"d®: m+ n=p+ g}. Thisoneis somewhat like (a): For any string a"b"c’d® O L, we will
produce as and d'sin parallel for awhile. But then one of two things will happen. Either m= g, in which case
we begin producing as and c's for a while, or m < q, in which case we begin producing b's and d's for a while.
(You will seethat it isfine that it's ambiguous what happensif m = q.) Eventually this process will stop and we
will begin producing the innermost b's and c's for a while. Notice that any of those four phases could produce
zero pairs. Since the four phases are distinct, we will need four nonterminals (since, for example, once we start
producing c's, we do not want ever to produce any d's again). So we have:

G=({ST,U,V,ab,cd,{abcd,R,S),where

R={S-a,S-T,S- U, T alc,T-V,U-budU-V,V - bVe,V - g
Every derivation will use symbols S, T, V in sequence or S, U, V in sequence. As a quick check for fencepost
errors, note that the shortest string in L is g, which isindeed generated by the grammar. (And we do not need any
rulesS - gorT - &)

How do we know this grammar works? Notice that any string for which m = g has two distinct derivations:
S=* d"Sd" = d"Td" = d"Vd" = d™b"c’d?, and
S=* d"Sd" = d"Ud" = d"Vd" = d"b"c’d?

Every string a"b"c’d® O L for which m > ¢ has a derivation:

S
= /* by q application of rule S - aSd */
alsde
=/ byrueS - T */
a'Td

= /* by m- g application of rulerule T - alc */
ald™m i Tc™d? = "™

= /*byrueT -V */

a"vc™ids
= /*byn=p-(m-q) applicationsof ruleV - bvVc */

d"o"Vv MO = gV P

=/*byrueV - ¢

a"b"cPd

For the other case (m <q), you can show the corresponding derivation. So every string in L is generated by G.
And it can be shown that no string not in L is generated by G.

(c)L={w O {a b}* : whastwice asmany b'sasas}. Thisoneis sort of tricky. Why? Because L doesn't
care about the order in which the as and b's occur. But grammars do. One solution is:
G=({S ab},{ab},R,S),whereR={S - SaSbSbS, S - ShSaShS, S - SbShbSaS, S - €}
Try some examples to convince yourself that this grammar works. Why does it work? Notice that all the rules
for S preserve the invariant that there are twice as many b'sasas. So we're guaranteed not to generate any strings
that aren't in L. Now we just have to worry about generating all the strings that are in L. The first three rules
handle the three possible orders in which the symbols b,b, and a can occur.

Homework 11 Context-Free Grammars 5

Another approach you could take is to build a pushdown automaton for L and then derive a grammar from it.

This may be easier simply because PDA's are good at counting. But deriving the grammar isn't trivia either. If
you had a hard time with this one, don't worry.

(d) L ={uawb : u,w O {a b}*, |ul = w[}. This one fools some people since you might think that the aand b
are correlated somehow. But consider the smpler language L' = {uaw : u, w [0 {a b}*, [u| = \w[}. This one

seems easier. We just need to generate u and w in parallel, keeping something in the middle that will turn into a.
Now back toL: L isjust L'with b tacked ontheend. So agrammar for L is:

G=({S T,ab},{ab},R,S),whereR={S - Th, T - ala, T - alb, T - bTa, T - bTh, T - a}.

8@G=({S A M,D,Fabc.{A,M,D, S ab,c,R,S),wheeR ={

F-a F - AFF

F-b F - SFF

Foc F - MFF
F - DFF }

(b) First, welet L'=L n A*a*. L'= {A"&d"':n>0}. L' can easly be shown to be nonregular using the
Pumping Theorem, so, since the regular languages are closed under intersection, L must not be regular.

9. (a) abbccedd
b)G=({S X,Y,ab,cd},{abcd,R,S),whereRiseither:
(S - axXdd, X - Xd, X - aXd, X - bbYccc, Y - bbYcce, Y - ¢€), or
(S-asd,S- Sd, S - aMdd, M - bbcee, M - bbMccc)

Homework 11 Context-Free Grammars 6

CS 341 Homework 12
Parse Trees

1. Consider thegrammar G = ({+,*, (,),id, T, F, E}, {+, *, (,), id}, R, E}, where
R={E-E+T,E-T, ToT*F, T F F-> (E), F-id}.
Givetwo derivations of the string id * id + id, one of which is leftmost and one of which is not leftmost.

2. Draw parse trees for each of the following:
(&) The simple grammar of English we presented in class and the string "big Jim ate green cheese.”
(b) The grammar of Problem 1 and the stringsid + (id + id) * id and (id * id + id * id).

3. Present a context-free grammar that generates [1, the empty language.

4. Consider the following grammar (the start symbol is S; the alphabets are implicit in the rules):
S - SS|AAA |&
A - aA|Aalb
(a) Describe the language generated by this grammar.
(b) Give aleft-most derivation for the terminal string abbaba.
(c) Show that the grammar is ambiguous by exhibiting two distinct derivation trees for some terminal string.
(d) If thislanguage is regular, give aregular (right linear) grammar generating it and construct the
corresponding FSM. If the language is not regular, prove that it is not.
5. Consider the following language : L = {w"w" : w [0 {&a, b}* and w" indicates w with each occurrence of a
replaced by b, and vice versa}. Give a context-free grammar G that generates L and a parse tree that shows that
aababb O L.

6. (a) Consider the CFG that you constructed in Homework 11, Problem 2 for {wew® : w O {a, b}*}. How many
derivations are there, using that grammar, for the string aabacabaa?
(b) Show parse tree(s) corresponding to your derivation(s). Is the grammar ambiguous?

7. Consider the language L = {w [J {a, b}* : w contains equal numbers of as and b's}

(a) Write a context-free grammar G for L.

(b) Show two derivations (if possible) for the string aabbab using G. Show at |east one leftmost derivation.

(c) Do all your derivations result in the same parse tree? If so, seeif you can find other parse trees or convince
yourself there are none.

(d) If Gisambiguous (i.e., you found multiple parse trees), remove the ambiguity. (Hint: look out for two
recursive occurrences of the same nonterminal in the right side of arule, e.g, X - XX)

(e) See how many parse trees you get for aabbab using the grammar developed in (d).

Solutions

3G=({S UZ % R,S),whereRisany set of rulesthat can't produce any stringsin =*. So, for example, R =
{S - S} doesthetrick. SodoesR = [J.

Homework 12 Parse Trees 1

4. (a) (& ba* ba* ba*)*
(b) S= AAA = aAAA = abAA = abAaA = abbaA — abbaAa— abbaba

(c) S S
A A A A /A\ T
N L |
Al\ a b b b a A b
|
b b
(d) G=({S, Sy, B1, Bs, B, a b}, {a, b}, R, S), where R = {
S-oe¢ Bl—’aBl B3_)aB3
S-S5 B; - bB, B; - €
St - aS B2 - aB> Bs - &
S]_—»bBl BZ—’bB3

a a

)
€ 3 b
@ £ | b a
J

56=({S,ab},{ab},R S),R={S - ah,S- bSa S - ¢} T
/\
a S b
a/é\b
PN
b]S a
€

6. (a) ThegrammarisG=(V, Z,R, S withV ={S,a b, c},~={a b,c},R={S - aSa, S - bSh, S - ¢}.
Thereisasingle derivation:
S = aSA = aaSaa = aabShaa = aabaSabaa = aabacabaa
(b) Thereisasingle parse tree. The grammar is unambiguous.

7.@G=(V,Z,R,9withV ={S},E={ab},R={

S - aSh

S - bSa

S-¢

S SS }

(b) (i) S= SS = aShS = aaShbS = aabbaSbh — aabbab /* Thisisthe leftmost derivation of the most
"sensible" parse.
(i) S= SS= SSS = aShSS = aaShbSS = aabbSS = aabbaShS = aabbabS = aabbab /* Thisisthe

leftmost derivation of a parse that introduced an unnecessary Sin the first step, which was then eliminated by
rewriting it as€ in thefinal step.

Homework 12 Parse Trees

(c) No. Thetwo derivations shown here have different parse trees. They do, however, have the same
bracketing, [ab]b][ab].(In other words, they have similar essential structures.) They differ only in how Sis
introduced and then eliminated. But there are other derivations that correspond to additional parse trees, and
some of them correspond to a completely different bracketing, [a[ab][ba]b]. One derivation that doesthisis

(i) S= aSh = aSSh = aabSh = aabbab

(d) Thisistricky. Recall that we were able to eliminate ambiguity in the case of the balanced parentheses
language just by getting rid of € except at the very top to allow for the empty string. If we do the same thing here,
wegetR= { S- ¢

S-T

T i a.b

T - arb

T - ba

T - bTa

T-TT
But aabbab still has multiple parses in this grammar. This language is different from balanced parens since we
can go back and forth between being ahead on a's and being ahead on b's (whereas, in the paren language, we
must always either be even or be ahead on open paren). So the two parses correspond to the bracketings
[aabb][ab] and [a[ab] [ba] b]. Thetroubleistherule T - TT, which can get applied at the very top of the tree
(asin the case of thefirst bracketing shown here), or anywhere further down (as in the case of the second one).
We clearly need some capability for forming a string by concatenating a perfectly balanced string with another
one, since, without that, we'll get no parse for the string abba. Just nesting won't work. We have to be able to
combine nesting and concatenation, but we have to control it. It's tempting to think that maybe an unambiguous
grammar doesn't exist, but it's pretty easy to see how to build a deterministic pda (with a bottom of stack symbol)
to accept this language, so there must be an unambiguous grammar. What we need is the notion of an A region,
in which we are currently ahead on as, and a B region, in which we are currently ahead on b's. Then at the top
level, we can allow an A region, followed by a B region, followed by an A region and so forth. Think of
switching between regions as what will happen when the stack is empty and we're completely even on the number
of dsand b'sthat we've seen so far. For example, [ab][ba] isone A region followed by one B region. Once we
enter an A region, we stay in it, always generating an afollowed (possibly after something else embedded in the
middle) by ab. After all, the definition of an A region, isthat we're always ahead on as. Only when we are
even, can we switch to a B region. Until then, if we want to generate a b, we don't need to do a pair starting with
b. We know we're ahead on a's, so make any desired b's go with an awe already have. Once we are even, we
must either quit or moveto aB region. If we allow for two A regions to be concatenated at the top, there will be
ambiguity between concatenating two A regions at the top vs. staying in asingle one. We must, however, allow
two A regions to be concatenated once we're inside an A region. Consider [a[ab][ab]b] Each [ab] is a perfectly
balanced A region and they are concatenated inside the A region whose boundaries are the first a and the final b.
So we must distinguish between concatenation within aregion (which only happens with regions of the same
type, e.g, two A'swithin an A) and concatenation at the very top level, which only happens between different

types.
Also, we must be careful of any rule of theform X — XX for another reason. Suppose we have a string that

correspondsto XX X. Isthat thefirst X being rewritten as two, or the second one being rewritten astwo. We
need to force a single associativity.

Homework 12 Parse Trees 3

All of thisleads to the following set of rulesR:

S-¢
S-T. [* start with an A region, then optionally aB, then an A, and so forth
S- T, [* start with a B region, then optionally an A, then a B, and so forth

Ta - A/* just asingle A region

Ta— AB * two regions, an A followed by aB

T, - ABT, /* wewritethisinstead of T, » TaT,to alow an arbitrary number of regions,
but force associativity,

T, — B/* these next three rules are the same as the previous three but starting with b

T, - BA

T, - BAT,

A - Ay/* this A region can be composed of asingle balanced set of asand b's

A -5 AA [* or it can have arbitrarily many such balanced sets.
A; - aAb [* abalanced set isastring of A regionsinside amatching a, b pair
A, - ab [* or it bottoms out to just the pair &, b

B - B;/* these next four rules are the same as the previous four but for B regions
B - BB

B, - bBa

B, - ba

(e) The string aabbab isasingle A region, and has only one parse tree in this grammar, corresponding to
[[aabb][ab]]. You may also want to try abab, abba, and abaababb to see how G works.

Homework 12

Parse Trees

CS 341 Homework 13
Pushdown Automata

1. Consider the pushdown automaton M = (K, 2, T, A, s, F), where
K={sf},
F={f},
z ={a b},
r={a,
A={((s a¢), (s a).((s b e)(sa)((s ae)(f) ((f. a a), (f,) ((f, b a), (f, €))}.
(a) Trace all possible sequences of transitions of M on input aba.
(b) Show that aba, aa, abb 0 L(M), but baa, bab, basaa 0 L (M).
(c) Describe L(M) in English.

2. Construct pushdown automata that accept each of the following:
(a) L = the language generated by the grammar G = (V, Z, R, S), where
V={S () LI}
2={G) L1}
R={ S-g
S - SS,
S -8,
S - (9}.
(b)L={d™": m<n<2m}.
(©L={wO{ab}*:w=w"}.
(d) L ={w O {a b}* : w has equal numbers of asand b's}.
(e) L ={w O{a b}* : whastwice asmany dsasb's}.
fL={dD":m=n}
(9) L ={uawb: uand w O {& b}* and |u| = |wl}

3. Consider the following language : L = {w"w" : w 00 {&, b}* and w" indicates w with each occurrence of a
replaced by b, and vice versa}. In Homework 12, problem 5, you wrote a context-free grammar for L. Now give
aPDA M that accepts L and trace a computation that shows that aababb [L.

4. Construct a context-free grammar for the language of problem 2(b): L = ({d"™ m< n<2m}).

Solutions

1. (a) There are three possible computations of M on aba:
(s aba) |- (s, ba, @) |- (s, & aa) |- (s, €, aaa)
(s aba) |- (s,ba @) |- (s, & aa) |- (f, €, aa)
(S! aba, 8) |_ (f1 ba, 8)
None of these is an accepting configuration.
(b) Thisis done by tracing the computation of M on each of the strings, as shown in (a).
(c) L(M) isthe set of strings whose middle symbol isa. In other words,

L(M) = {xay D {a b}*: x| = |y[}.

2. (a) Notice that the square brackets and the parentheses must be properly nested. So the strategy will be to push
the open brackets and parens and pop them against matching close brackets and parens as they areread in. We
only need one state, since all the counting will be done on the stack. Since € [L, the start state can be final.
Thuswehave M =({s}, {(,), [, 1}.{(, [}, A, s{s}), where (sorry about the confusing use of parentheses both as
part of the notation and as symbolsin the language):

Homework 13 Pushdown Automata 1

A= {((s (-8, (s (), /* push (- */

(s [,), (s D), /*pusn[*/
((s,), 0.(s €)), * if the input character is) and the top of the stack is (, they match */
(s 1,D, (s 9)} /* same for matching square brackets */

If we run out of input and stack at the same time, we'll accept.

(b) Clearly we need to use the stack to count the a's and then compare that count to the b's asthey'reread in. The
complication hereisthat for every a, there may be either one or two b's. So well need nondeterminism. Every
string in L has two regions, the aregion followed by the b region (okay, they're hard to tell apart in the case of ¢,
but trivially, this even true there). So we need a machine with at least two states.

There are two ways we could deal with the fact that, each time we see an a, we don't know whether it will be
matched by one b or two. Thefirst isto push either one or two characters onto the stack. In this case, once we
get to the b's, we'll pop one character for every b we see. A nondeterministic machine that follows all paths of
combinations of one or two pushed characters will find at least one match for every stringin L. The aternativeis
to push asingle character for every a and then to get nondeterministic when we're processing the b's: For each
stack character, we accept either one b or two. Here'saPDA that takes the second approach. Y ou may want to
try writing one that doesit the other way. This machine actually needs three states since it needs two states for
processing b'sto allow for the case where two b's are read but only asingleais popped. SoM =({s, f, g}, {a, b},
{a, A, s {f, g}), where

A={((s & ¢), (s a), /* Read an aand push one onto the stack */
((s &, €), (f,), /¥ Jump to the b reading state */
((f, b, &, (f, €)), /* Read asingleb and popana */
((f, b, @), (g, €)),/* Read asingle b and pop an a but get ready to read a second one */
((g, b, €), (, €))}. /* Read a b without popping ana */

(c) A PDA that accepts{w : w = W} isjust avariation of the PDA that accepts {ww"} (which you'l findin
Lecture Notes 14). Y ou can modify that PDA by adding two transitions ((s, & €), (f, €)) and ((s, b, €), (f, €)),
which have the effect of making odd length palindromes accepted by skipping their middle symbol.

(d) We've got another counting problem here, but now order doesn't matter -- just numbers. Notice that with
languages of this sort, it's almost always easier to build a PDA than agrammar, since PDAs do a good job of
using their stack for counting, while grammars have to consider the order in which characters are generated. If
you don't believe this, try writing a grammar for this language.

Consider any stringw in L. At any point in the processing of w, one of three conditions holds: (1) We have seen
equal numbers of a'sand b's; (2) We have seen more asthan b's; or (3) We have seen more b'sthan as. What we
need to do is to use the stack to count whichever character we've seen more of. Then, when we see the
corresponding instance of the other character we can "cancel” them by consuming the input and popping off the
stack. Soif we've seen an excess of a's, there will be a's on the stack. If we've seen an excess of b's there will be
b'son the stack. If we're even, the stack will be empty. Then, whatever character comes next, welll start counting
it by putting it on the stack. In fact, we can build our PDA so that the following invariant is always maintained:
(Number of asread so far) - (Number of b'sread so far)

(Number of ason stack) - (Number of b's on stack)

Notice that w (I L if and only if, when we finish reading w,

[(Number of asread so far) - (Number of b'sread so far)] = 0.
So, if webuild M so that it maintains this invariant, then we know that if M consumes w and ends with its stack
empty, it hasseen astringinL. And, if its stack isn't empty, then it hasn't seen astringin L.

Homework 13 Pushdown Automata 2

To make thiswork, we need to be able to tell if the stack is empty, since that's the only case where we might
consider pushing either aor b. Recall that we can't do that just by writing € as the stack character, since that
always matches, even if the stack is not empty. So we'll start by pushing a specia character # onto the bottom of
the stack. We can then check to see if the stack is empty by seeing if #ison top. We can do all the real work in
our PDA inasingle state. But, because we're using the bottom of stack symbol #, we need two additional states:
the start state, in which we do nothing except push # and move to the working state, and the final state, which we
get to once we've popped # and can then do nothing else. Considering all these issues, weget M = ({s, q, f}, {a,
b}, {# a b}, A, s, {f}), where

A={((s & ¢),(q,#), * push # and move to the working state q */
((g, & #), (q, a#)), * the stack is empty and we've got an a, so push it */
((g, & a), (q, aa)), [* the stack is counting a's and we've got another one so push it */
((g, b, &), (q, €)), * the stack is counting a's and we've got b, so cancel aand b */
((g, b, #), (q, b#)), [* the stack is empty and we've got ab, so pushit */
((g, b, b), (g, bby)), * the stack is counting b's and we've got another one so push it */
((g, & b), (g, €)), * the stack is counting b's and we've got a, so cancel band a */
((g, &, %), (f, €))}. /* the stack is empty of dsand b's. Pop the # and quit. */

To convince yourself that M does the job, you should show that M doesin fact maintain the invariant we stated
above.

The only nondeterminism in this machine involves the last transition in which we guess that we're at the end of
theinput. Thereisan alternative way to solve this problem in which we don't bother with the bottom of stack
symbol #. Instead, we substitute a lot of hondeterminism and we sometimes push a's on top of b's, and so forth.
Most of those paths will end up in dead ends. The machine has fewer states but is harder to analyze. Try to
construct it if you like.

(e) Thisoneissimilar to (d) except that there are two asfor every b. Recall the two techniques for matching two
to one that we discussed in our solution to (b). Thistime, though, we do know that there are aways two asto
every b. We don't need nondeterminism to allow for either one or two. But, because we no longer know that all
the a's come first, we do need to consider what to do in the two cases: (1) We're counting b's on the stack; and (2)
We're counting as on the stack. If we're counting b's, let's take the approach in which we push two b's every time
we see one. Then, when we go to cancel as, we can just pop one b for each a. If we see twice as many asasb's,
well end up with an empty stack. Now what if we're counting as? We'll push one afor every one we see. When
we see b, we pop two as. The only special case we need to consider arisesin strings such as "aba’', where well
only have seen asingle a at the point at which we seethe b. What we need to do isto switch from counting asto
counting b's, since the b countstwice. Thusthe invariant that we want to maintain is now

(Number of asread so far) - 2*(Number of b'sread so far)

(Number of ason stack) - (Number of b's on stack)

Wecando al thiswithM = ({s, q, f}, {a b}, {# a b}, A, s, {f}), where

A={((s & ¢€),(q %), /* push # and move to the working state q */
((g, & #), (g, &), /* the stack is empty and we've got an a, so push it */
((g, & &), (g, aa)), /* the stack is counting a's and we've got another one so push it */
((g, b, @), (q, €)), * the stack is counting a's and we've got b, so cancel aaand b */

((g, b, &), (q, b#)), /* the stack contains asingle aand we've got b, so cancel theaand b
and start counting b's, since we have a shortage of onea */

((g, b, #), (g, bb#)), [* the stack is empty and we've got a b, so push two b's */

((g, b, b), (g, bbhy), /* the stack is counting b's and we've got another one so push two */

((g, & b), (g, €)), /* the stack is counting b's and we've got a, so cancel band a */

((g, &, #), (f, €))}. /* the stack is empty of dsand b's. Pop the # and quit. */

Homework 13 Pushdown Automata 3

Y ou should show that M preserves the invariant above.

(f) Theidea hereisto push each aaswe seeit. Then, on thefirst b, moveto a second state and pop an afor each
b. If we get to the end of the string and either the stack is empty (m = n) or there are still as on the stack (m > n)
then we accept. If we find ab and there's no ato pop, then there will be no action and so well fail. This machine
is nondeterministic for two reasons. Thefirst isthat, in case there are no b's, we must be able to guess that we've
reached the end of the input string and go pop al the as off the stack. The second isthat if there were b's but
fewer than the number of a's, then we must guess that we've reached the end of the input string and pop all the a's
off the stack. If we guesswrong, that path will just fail, but it will never cause us to accept something we
shouldn't, since it only pops off extra as, which is what we want anyway. We don't need a separate state for the
final popping phase, since we're willing to accept either m=n or m> n. This contrasts with the example we did
in class, where we required that m > n. In that case, the state where we run out of input and the stack at the same
time (i.e., m = n) had to be argjecting state. Thus we needed an additional accepting state where we popped the
stack.

M=({1 2}, {a b}, {a, 1{2, A=

(1,4 ¢),(1,a) /* push an a on the stack for every input a

((1, b, a), (2,¢) /* pop an afor thefirst b and go to the b-popping state
((1,€,¢€),(2,¢ [* in case there aren't any b's -- guess end of string and go pop any as
((2,b, @), (2,¢) [* for each input b, pop an a off the stack

((2,¢,@,(2,¢) /* if werun out of input while there are till s on the stack,

then pop the as and accept

(g) Theidea here isto create a nondeterministic machine. In the start state (1), it reads a's and b's, and for each
character seen, it pushes an x on the stack. Thusit countsthe length of u. If it seesan a, it may also guess that
thisisthe required separator aand go to state 2. In state 2, it reads a's and b's, and for each character seen, pops
an x off the stack. If there's nothing to pop, the machine will fail. If it seesab, it may also guess that thisisthe
required final b and go to thefinal state, state 3. The machine will then accept if both the input and the stack are
empty.

M=({123} {ab} {x},s{2, A=

(1, & ¢), (1, %) /* push an x on the stack for every input a
((1, b, €), (1,x)) /* push an x on the stack for every input b
(1,4 ¢), (2,¢) /* guess that thisisthe separator a. No stack action
((2,4,%),(2,¢) [* for each input a, pop an x off the stack
((2, b, x), (2, ¢) [* for each input b, pop an x off the stack
((2,b,€),(3,¢) /* guessthat thisisthe final b and go to the final state
3.
alla alb/ (]
ROEENG
bilb b/al [
4, S- ¢
S- a%h
S - aShb

Homework 13 Pushdown Automata 4

CS 341 Homework 14
Pushdown Automata and Context-Free Grammars

1. In class, we described an algorithm for constructing a PDA to accept alanguage L, given a context free
grammar for L. Let L be the balanced brackets language defined by the grammar G=({S, [, I}, {[. 1}, R, 9),
where R =

S-¢6S-5S5S- [
Apply the construction algorithm to this grammar to derive a PDA that acceptsL. Trace the operation of the
PDA you have constructed on the input string [[][]].

2. Consider the following PDA M:

g/l ‘] @
blal
(@) What is L(M)?

(b) Give adeterministic PDA that accepts L(M) (not L(M)$).

alla

3. Write a context-free grammar for L(M), where M is

%) ell —¢&ll —&ll
alla b/al b// b%) c/bl 9 elb/ 9

4. Consider the language L = {ba™bd™b...bad™: n>2, m1, ..., mn =0, and mi # mj for somei, j}
(a) Give anondeterministic PDA that acceptsL.
(b) Write a context-free grammar that generatesL.
(c) Provethat L is not regular.

Solutions

1. Thisisavery simple mechanical process that you should have no difficulty carrying out, and getting the
following PDA, M = ({p, a}, {[, I} . {S, [. I}, A, p, {q}), where
A= {((re) (@),
(9, €, 9),(a,€), ((a, &, 9), (9, S9)), ((q, &, S), (q, []])),
((a, [, D, (@, €), ((a, 1. 1), (a, €))}

2.(a) L(M) ={db"a: n=0}
(b)

Homework 14 Pushdown Automata and Context-Free Grammars

3. Don't even try to use the grammar construction algorithm. Just observethat L = {a'b"b"c’: m=pandnand p
> 0}, or, alternatively {a'b"c’ : m>n+pandnand p=0}. It can be generated by the following rules:

S- SS

S, - aSb [* S; generatesthe a'b" part. */

S - ¢€

S, - bS, [* S, generates the b™c” part. */

S, - bSc

S - ¢

4. (a) s
?@M@%@ FORRG

a,b// a,b//

We use state 2 to skip over an arbitrary number of ba groups that aren't involved in the required mismatch.
We use state 3 to count the first group of a'swe care about.

We use state 4 to count the second group and make sure it's not equal to the first.

We use state 5 to skip over an arbitrary number of ba groups in between the two we care about.

We use state 6 to clear the stack in the case that the second group had fewer a's than the first group did.
We use state 7 to skip over any remaining ba groups that aren't involved in the required mismatch.

(b) S - ADBLA' * L will take care of two groups where the first group has more as */
S - AbRA' /* R will take care of two groups where the second group has more as */
L - ablal |aLa
R - ba|Ra|aRa
A' - bAA' |
A - aAle

(c) LetL,=ba*ba*, whichisobviously regular.
If L isregular then
Lo=L n L;isregular.
L, =badha™, nzm
=L, n Ly must also beregular.
But =L, n Ly =ba'ba", n=m, which can easily be shown, using the pumping theorem, not to be regular.

Homework 14 Pushdown Automata and Context-Free Grammars 2

CS 341 Homework 15
Parsing

1. Show that the following languages are deterministic context free.
(@ {d™": m# n}
(b) {wew® : w O {a, b} *}
(©) {cad™™: m=0} O {da™®™: m= 0}
(d) (@"cb™: m=>0} O {ad"db™: m= 0}

2. Consider the context-free grammar: G=(V, Z, R, S), whereV ={(,), .,a S, A}, Z={(,), },andR=
{S-0.
S-a
S - (A),
A - S
A -5 AS (If you are familiar with the programming language LISP, notice that L(G) contains all
atoms and lists, where the symbol a stands for any non-null atom.)

(a) Apply left factoring and the rule for getting rid of left recursion to G. Let G' be the resulting grammar.
Arguethat G'isLL(1). Construct a deterministic pushdown automaton M that accepts L(G)$ by doing atop
down parse. Study the computation of M on the string ((()).a).

(b) Repeat Part (a) for the grammar resulting from G if onereplacesthefirstruleby A - €.

(c) Repeat Part (a) for the grammar resulting from G if onereplacesthe last ruleby A - SA.

3. Answer each of the following questions True or False. If you choose false, you should be able to state a
counterexample.

(a) If alanguage L can be described by aregular expression, we can be sure it is a context-free language.

(b) If alanguage L cannot be described by aregular expression, we can be sure it is not a context-free
language.

(c) If L isgenerated by a context-free grammar, then L cannot be regular.

(d) If there is no pushdown automaton accepting L, then L cannot be regular.

(e) If L is accepted by a nondeterministic finite automaton, then there is some deterministic PDA accepting L.

(f) If L isaccepted by a deterministic PDA, then L' (the complement of L) must be regular.

(g) If L isaccepted by adeterministic PDA, then L' must be context free.

(h) If, for agiven L in{a, b}*, thereexist x, y, z, such that y # € and xy"z O L for all n> 0, then L must be
regular.

(i) If, for agiven L in{a, b}*, there do not exist u, v, X, y, z such that vy| =1 and uv"xy"z O L foral n>0,
then L cannot be regular.

() IfLisregularandL =L1 n L2for someL1 and L2, then at least one of L1 and L2 must be regular.

(k) If L iscontext freeand L = L1L2 for some L1 and L2, then L1 and L2 must both be context free.

(1) If L iscontext free, then L* must be regular.

(m) If L isan infinite context-free language, then in any context-free grammar generating L there exists at least
onerecursiverule.

(n) If L isan infinite context-free language, then there is some context-free grammar generating L that has no
rule of theform A - B, where A and B are nonterminal symbols.

(o) Every context-free grammar can be converted into an equivalent regular grammar.

(p) Given a context-free grammar generating L, every string in L has a right-most derivation.

4. Recall problem 4 from Homework 12. It asked you to consider the following grammar for alanguage L (the
start symbol is S; the alphabets are implicit in the rules):
S - SS|AAA |&
A - aA |Aa|b
(a) It isnot possible to convert this grammar to an equivalent one in Chomsky Normal Form. Why not?

Homework 15 Parsing 1

(b) Modify the grammar as little as possible so that it generates L - . Now convert this new grammar to
Chomsky Normal Form. Isthe resulting grammar still ambiguous? Why or why not?

(c) From either the original grammar for L - € or the one in Chomsky Normal Form, construct a PDA that
acceptsL - e.
5. Consider the following language : L = {w"w" : w [0 {&, b}* and w" indicates w with each occurrence of a
replaced by b, and vice versa}. In Homework 12, problem 5, you wrote a context-free grammar for L. Then, in
Homework 13, problem 3, you wrote a PDA M that accepts L and traced one of its computations. Now decide
whether you think L is deterministic context free. Defend your answer.

6. Convert the following grammar for arithmetic expressions to Chomsky Normal Form:
E-E+T
E-T
T-T*F
T-F
F - (B)
F-id

7. Again, consider the grammar for arithmetic expressions given in Problem 6. Walk through the process of
doing a top down parse of the following strings using that grammar. Point out the places where a decision hasto
be made about what to do.

(@ id*id+id

(b)id*id* id

Solutions

1. (@) L ={a@"™": m#n}. Toshow that alanguage L is deterministic context free, we need to show a
deterministic PDA that accepts L$. Wedid that for L ={a™": m#n} inclass. (See Lecture Notes 14).

(b) L ={wew®: w O {a, b}*}. In class (again see Lecture Notes 14), we built a deterministic PDA to accept L
={wew" :w O {a, b}*}. It'seasy toturnit into adeterministic PDA that accepts L $.

(9L ={cad"™: m=>0} O{dd"v™: m=0}. Oftenit’shard to build a deterministic PDA for alanguage that is
formed by taking the union of two other languages. For example, {a"™b™: m> 0} O {a"b*™: m = 0} would be
hard (in fact it's impossible) because we have no way of knowing, until we run out of b’s, whether we're
expecting two b's for each aor just one. However, {ca™™: m=> 0} O {da"0®™: m=> 0} isactually quite easy.
Every string startswith ac or ad. If it'sac, then we know to look for one b for each g; if it'sad, then we know
to look for two. So thefirst thing we do isto start our machine like this:

\\ :
The machine that startsin state 1 is our classic machine for a'b", except of course that it must have afinal
transition on $ to its final state.

d

We have two choices for the machine that startsin state 2. 1t can either push one afor every ait sees, and then
pop an afor every pair of b’'s, or it can push two a sfor every ait sees, and then pop one afor every b.

Homework 15 Parsing 2

(d) L =@"ch™: m=0} O{ad"do®™: m=0}. Now we ve got another unioned language. But thistime we don’t
get a clue from the first character which part of the language we' re dealing with. That turns out to be okay
though, because we do find out before we have to start processing the b’ s whether we' ve got two b’sfor each aor
just one. Recall the two approaches we mentioned for machine 2 in the last problem. What we need hereisthe
first, the one that pushes asingle afor each ait sees. Then, when we see ac or d, we branch and either pop an a
for each b or pop an afor every two b's.

2. (a) We need to apply left factoring to thetworulesS - () and S - (A). We also need to eliminate the | eft
recursion fromA - A .S. Applying left factoring, we get the first column shown here. Then getting rid of left
recursion gets us the second column:

S~ (S S~ (S
S -) S -)
S - A) S 5 A)
S-a S-a
A-S A - SA’
A - AS A" - SA'
A S ¢

(b) Notice that the point of thefirst rule, whichwas S - (), wasto get a set of parentheses with no A inside.
An alternative way to do that is to dump that rule but to add therule A - €. Now we alwaysintroduce an A
when we expand S, but we can get rid of it later. If we do this, then there’ s no left factoring to be done. We still
have to get rid of the left recursion on A, just as we did above, however.

(c) If wechange A -~ A.St0oS - S.A, then there’ s no left recursion to get rid of and we can leave the rules
unchanged. Notice, though, that we'll get different parse trees this way, which may or may not be important. To
seethis, consider the string (a.a.a) and parse it using both the original grammar and the one we get if we change
thelast rule.

3. (a) True, since all regular languages are context-free.

(b) False, there exist languages that are context-free but not regular.

(c) False. All regular languages are also context-free and thus are generated by context-free grammars.

(d) True, sinceif L were regular, it would also be context free and thus would be accepted by some PDA.

(e) True, since there must also be a deterministic FSM and thus a deterministic PDA.

(f) False. Consider L =ab". L'={w O {a, b}* : either some b comes before some a or there is an unequal
number of asand b's.}. Clearly thislanguage is not regular since we can't count the a's and b's.

(g) True, since the deterministic context-free languages are closed under complement.

(h) False. SupposelL =a'c*b", whichisclearly not regular. Letx =aa, y=c,andz=bb. xy"zOL.

(i) False. L could befinite.

() False. L1 could bedh" and L2 could be{e 0 dh™: n# m}. Neitherisregular. But L1 n L2 ={¢€}, which
isregular.

(k) False. Let L1=a* and L2 ={d%h"c™: n# m}. L2isnot context free. But L =L1L2 =a*b"c™, whichis
context free.

(I) False. Let L =ww".

(m) True.

(n) True, since we have a procedure for eliminating such unit productions.

(o) False, since there exist context-free languages that are not regular.

(p) True.

4. (a) No grammar in Chomsky Normal Form can generate€, yet € [J L.

Homework 15 Parsing 3

(b) Inthe original grammar, we could generate zero copies of AAA (by letting S go to €), one copy of AAA
(by letting S go to AAA), two copies (by letting S go to SS and then each of them to AAA), three copies of AAA
(by letting Sgo to SS, then one of the S'sgoesto SS, then al three go to AAA), and so forth. We want to make
sure that we can still get one copy, two copies, three copies, etc. We just want to eliminate the zero copies
option. Note that the only role of Sisto determine how many copies of AAA are produced. Once we have
generated A’s we can never go back and apply the Srules again. So all we have to do is to eliminate the
production S - €. The modified grammar to accept L - € isthus:

G=({S A,B,C ab},{ab}, RS, wheeR={
S - SS|AAA
A - aA|Aalb
If we convert this grammar to Chomsky Normal Form, we get:

G=({S A,B,C,ab},{ab},R,S),whereR={

S- SS A - AC

S- AB A-Db

B - AA C-a

A-CA} This grammar is still ambiguous.

(c) (from the grammar of part (b)): M =({p,a},{a b},{S, A,a b}, A p{q})
A={ ((p.&), () ((a, & A), (g, 8A))
(9, €, 9),(q, S9) ((a, & A), (g, Ad))
(0, 9), (a0, AAA) ((9.& A), (a, b))
((a, &), (g, €))
((9,b,b), (a,€)) }

5. L is not deterministic context free for essentially the same reason that ww” is not.

6. The original grammar was: E-E+T

E-T

T-T*F

T-F

F - (E)

F-id
Step 2. Thereareno [rules. We show steps 3, 4, and 5 next to each other, so it's clear where therulesin steps 4
and 5 came from. In each case, thefirst rule that is derived from a step 3 ruleis next to its source. If more than
oneruleis derived from any given step 3 rule, the second and others are shown immediately under the first.
That's why there are some blank linesin the first two columns.

Homework 15 Parsing 4

Step 3. Step 4. Step 5.

E=*T,F
T=>*F
G'= ELE+T E - EPT E- EFE
E - PT
TLT*F T - TMF T-TT
T -MF
F - (B) F - LER F-LF
F-ER
F-id F-id F-id
Then we add:
E-T*F E - TMF E-TT (sinceT' - M F)
E - (B E - LER E - LF (sinceF - ER)
E-id E-id E - id
T - (B) T - LER T-LF (sinceF - ER)
T-id T -id T-id
P- + P_ +
M- * M o *
L - (L - (
R-) R-)

Homework 15 Parsing

CS 341 Homework 16
Languagesthat Areand Are Not Context-Free

1. Show that the following languages are context-free. Y ou can do this by writing a context free grammar or a
PDA, or you can use the closure theorems for context-free languages. For example, you could show that L isthe
union of two simpler context-free languages.

(@ L =4dch"

(b)L={a b}*-{db":n=0}

() L={d'd*:n=qg,orm<porm+n=p+q}

(d) L ={a, b}* - L,, where L, isthe language { babaabaaab...ba™bab : n n>1}.

2. Show that the following languages are not context-free.

@L={a" :n20}

(b) L ={www :w O {a, b}*}

(c)L={wO{a b, c}* : whas equa numbers of as, b's, and c's}
(dL={db™a:n=m}

(e) L ={ah"c"d™™ : m, n> 0}

3. Give an example of acontext free language (# Z*) that contains a subset that is not context free. Describe the
subset.

4. What is wrong with the following "proof" that a’b™d" is context free?
(1) Both {@'b": n= 0} and {b"a": n >0} are context free.
(2) d'b?d" = {a'b{b"a"}
(3) Since the context free languages are closed under concatenation, a'b”™a" is context free.

5. Consider the following context free grammar: G = ({S, A, a, b}, {a b}, R, S), where R ={
S - aAS
S, a
A - SbA
A - SS
A - ba }
(a) Answer each of the following questions True or False:
(i) From the fact that G is context free, it follows that there is no regular expression for L(G).
(ii) L(G) contains no strings of length 3.
(iii) For any stringw O L(G), there exists u, v, X, y, z such that w = uvxyz, |vy| = 1, and uv"xy"z 0 L(G)
foraln=0.
(iv) If there exist languages L1 and L2 such that L(G) = L1 [0 L2, then L1 and L2 must both be context
free.
(v) Thelanguage (L(G))" is context free.
(b) Give aleftmost derivation according to G of aaaabaa.
(c) Give the parse tree corresponding to the derivation in (b).
(d) Give anondeterministic PDA that accepts L(G).

6. Show that the following language is context free:
L ={xx®yy"zz": x,y, z0{a b}*}.

Homework 16 Languages That Are and Are Not Context Free 1

7. Suppose that L is context free and R isregular.
(a) IsL - R necessarily context free?
(b) ISR - L necessarily context free?

8. LetL;={db™:n=>m}. Let Ry ={(al b)* : thereisan odd number of a's and an even number of b's}. Show
apdathat acceptsL; n R;.

Solutions

1. (a) L =a'ch". We can easily do this one by building a CFG for L. Our CFG is almost the same as the one we
didin classfor a'b™:
S - aSB
S-c

(b) L ={a b}* -{adb": n=0}. Inother words, we ve got the complement of a'b". So we look at how a string
could fail to bein a'b". There aretwo ways: either the @' sand b’'s are out of order or there are not equal numbers
of them. So our language L is the union of two other languages:

e L;=(alb)*-a*b* (stringswherethea sand b’'sare out of order)

e L,=db"n#m (stringswherethe a sand b’s are in order but there aren’t matching numbers of them)

L, iscontext free. We gave a context-free grammar for it in class (Lecture 12). L, isthe complement of the
regular language a* b*, so it isalso regular and thus context free. Since the union of two context-free languages
is context free, L is context free.

(©L={d"c’d":n=qorm<porm+n=p+q}. Thisonelooks scary, but it's just the union of three quite
simple context-free languages:
L,=ah'c’d":n=q
L,=a"h"c’d": m<p
L;=a""c’d: m+n=p+q
Y ou can easily write context-free grammars for each of these languages.

(d) L ={a, b}* - Ly, where L, isthe language { babaabaaab...ba™'bab : n n>1}. Thisoneisinteresting. L,
isnot context free. But its complement L is. There are two ways to show this:

1. Wecould build aPDA. Wecan't build a PDA for L,: if we count the first group of a sthen we'll need to
pop them to match against the second. But then what do we do for the third? L is easier though. We don't
need to check that all the agroups areright. We simply have to find one that is wrong. We can do that with a
nondeterministic pda P. P goes through the string making sure that the basic b(a’b)” structure is followed.
Also, it nondeterministically chooses one group of & sto count. It then checks that the following group does
not contain one more a. If any branch succeeds (i.e., it finds a mismatched pair of adjacent a groups) then P
accepts.

2. We could use the same technique we used in (b) and (c) and decompose L into the union of two simpler
languages. Just aswe did in (b), we ask how astring could fail to beinL;and thusbein L. The answer is
that it could fail to have the correct b(a'b)* structure or it could have regions of a s that don’t follow the rule
that each region must contain one more athan did its predecessor. ThusL isthe union of two languages:

e Ly=(alb)* -b(@b)*

o Ly={xbd"aby O0{a, b}* : m+1#n}.

It's easy to show that L, is context free: Since b(a'b)” isregular its complement is regular and thus context
free. Lzisalso context free. You can build either a CFG or aPDA for it. It'svery similar to the simpler
language a'™ n # m that we used in (b) above. SoL; =L, [L3iscontext free.

2. (L ={ a"” :n> 0}. Supposel ={ a” :n> 0} were context free. Then we could pump. Let n=M? Sow
isthe string with M z ,or M* as) Clearly w|=K, sinceM > K. So uvvxyyz must bein L (whatever v and y
Homework 16 Languages That Are and Are Not Context Free 2

are). Butit can't be. Why not? Given our w, the next element of L isthe string with (M*+1)? as. That'sM* +
2M? + 1 (expanding it out). But we know that [vxy| < M, so we can't pump in more than M a's when we pump
only once. Thusthe string we just created can't have more than M* + M as. Clearly not enough.

(b) L ={www : w [{a, b}*}. The easiest way to do thisisnot to prove directly that L = {www : w [{a, b}*}
is not context free. Instead, let'sconsider L1 =L n a*ba*ba*b. If L iscontext free, L1 must alsobe. L1 =
{d'ba'bab : n>0}. Toshow that L1 isnot context free, let's choose w = a"ba'ba'b. First we observe that
neither v nor y can contain b, because if either did, then, when we pump, we'd have more than three b's, which is
not allowed. So both must be in one of the three aregions. We consider the cases:

(1, 1) That group of aswill no longer match the other two, so the stringisnot in L1.

(2,2 i

(3.3) i

(1, 2) At least one of these two groups will have something pumped into it and will no longer match the
onethat isleft out.

(2,3) "

(1, 3) excluded since vxy| < M, so vxy can't span the middle region of a's.

(c)L={wO{a b,c}*. Agan,theeasiest thingtodoisfirsttointersect L = {w {a, b, ¢}* : w hasequal
numbers of as, b's, and c's} with aregular language. Thistimeweconstruct L1 =L n a*b*c*. L1 must be
context freeif L is. But L1 =a'b"c", which we've already proven is not context free. So L isn't either.

(d) L ={db™a": n=m}. Well use the pumping lemmato show that L = {a’b™a" : n>=m} is not context free.
Choosew = a"b"d". We know that neither v nor y can cross aand b regions, because if one of them did, then,
when we pumped, we'd get a's and b's out of order. So we need only consider the cases where each isin one of
the three regions of w (the first group of ass, the b's, and the second group of as.)

(1, 1) Thefirst group of aswill no longer match the second group.

(2, 2) If we pump in b's, then at some point there will be more b's than a's, and that's not allowed.

(3, 3) Analogousto (1, 1)

(1, 2) We must either (or both) pump asinto region 1, which means the two a regions won't match, or,
if y isnot empty, we'll pump in b's but then eventually there will be more b's than as.

(2, 3) Analogousto (1, 2)

(1, 3) Ruled out since jvxy| < M, so vxy can't span the middle region of b's.

(e) L ={ah™c"d™™ : m, n>0}. We can show that L = {a'b™c"d™™ : m, n= 0} is not context free by
pumping. We choosew = a"b"cMd™. Clearly neither v nor y can cross regions and include more than one letter,
since if that happened we'd get letters out of order when we pumped. So we only consider the cases where v and
y fall within asingle region. Well consider four regions, corresponding to a, b, ¢, and d.

(1, 1) Well change the number of as and they won't match the c's any more.

(1, 2) If visnot empty, well change the a's and them won't match the ¢'s. If y is nonempty, well change the
number of b's and then we won't have the right number of d's any more.

(1, 3), (1, 4) areruled out because [vxy| < M, so vxy can't span across any whole regions.

(2, 2) Well change the number of b's but then we won't have the right number of d's.

(2, 3) If visnot empty, well change the b's without changing the d's. If y is not empty, well change the ¢'s and
they'll no longer match the as.

(2, 4) isruled out because [vxy| < M, so vxy can't span across any whole regions.

(3, 3) Well change the number of c's and they won't match the as.

(3, 4) If visnot empty, well change ¢'s and they won't match as. If y is not empty, we'll change d's without
changing b's.

(4, 4) Well change d's without changing asor b's.

Homework 16 Languages That Are and Are Not Context Free 3

3. LetL={adb"c’:n=morm=p}. Lisclearly context free. We can build a nondeterministic PDA M to
accept it. M has two forks, one of which compares n to m and the other of which compares m to p (skipping over
theas). L1={adb"c’:n=mand m=p} isasubset of L. But L1=a"b"c", which we know is not context free.

4. (1) isfine. (2) isfineif we don't over interpret it. In particular, although both languages are defined in terms
of the variable n, the scope of that variable is asingle language. So within each individual language definition,
the two occurrences of n are correctly interpreted to be occurrences of a single variable, and thus the values must
be same both times. However, when we concatenate the two languages, we still have two separate language
definitions with separate variables. So the two n's are different. Thisisthe key. It meansthat we can't assume
that, given {a'b"}{b"d" }, we choose the same value of n for the two strings we choose. For example, we could
get ab’b’a’, which is a?b’a®, which is clearly not in {a'h?'a”.

5.(a) (i) False, sinceall regular languages are also context free.
(it) True.
(iii) False. For examplea U L, but is not long enough to contain pumpabl e substrings.
(iv) False.
(v) True, since the context-free languages are closed under reversal.
(b) S= aAs =aSSS = aaSS = aaaS = aaaaA S — aaaabaS — aaaabaa.

(© S
/l\
a A S
S/\S a/A‘\\S
I | N\ |
a a b a a

(dM=({p,d,{a b} {ab} p{dq} A) whereA=
{((p. & 8),(@,9), (9. & a), (g, £)), (a9, b, b), (q, €)), (a, &,), (9, 8AT)), (0, &, 9), (9, @),
(@, & A), (@, SbA)), (0, & A), (0, S9)), ((a, &, A), (q, ba)) }

6. The easy way to show that L = {xx"yy"zz" : x, y, [0 {a, b} *} is context free isto recall that we've already
shown that {xx™: x 0 {a, b}*} is context free, and the context-free languages are closed under concatenation.
But we can also do this directly by giving agrammar for L:

S - AAA

A - aAa

A - bAD

A-ce

7.(@ L -Riscontextfree. L -R=L n R'(the complement of R). R'isregular (since the regular languages are
closed under complement) and the intersection of a context-free language and aregular language is context-free,
so L - Riscontext free.

(b) R - L need not be context free. R-L =R n L. But L' may not be context free, since the context-free
languages are not closed under complement. (The deterministic ones are, but L may not be deterministic.) If we
let R=2*,then R - L isexactly the complement of L.

8. My, whichacceptsL, = ({1, 2},{a b}, {a},A 1, {2}), A=
(1 a¢), (1, a)
((1, b, &), (2,¢€))
((1,&,¢),(2,¢)
((2,b,), (2,¢)

Homework 16 Languages That Are and Are Not Context Free 4

((2, ¢, @, (2,¢)
M., which accepts R, = ({1, 2, 3,4},{a b}, d,1,{2}), 0=

(1,82
(1, b, 3)
(2,81
(2, b, 4)
(3.a4)
(3,b,2)
(4,873
(4,b,2)

M3, which acceptsL; n Ry = ({(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2,), (2, 3), (2, 4)}, {a b}, {&}, A, (1,1),

{(22)}), A=

(1, 1), &), ((1, 2), &)
(1, 1), b, a), ((2,3), ¥))
(((1,2), a ¢), ((1, 1), &)
(1, 2), b, a), ((2,4), £))
(((1,3), & €), (1, 4), &)
(1, 3), b, a), ((2, 1), ¥))
(((1, 4), a), ((1, 3), &)
(1, 4),b,a),((22),)

Homework 16

(((2, 1), b, a),((2,3), ¥))
(((2,2), b, a), ((2, 4), £))
(((2,3),b,a),((2, 1), ¥))
(((2,4),b,a),((2,2), 8))

Languages That Are and Are Not Context Free

(((1, 1), &,8),((2 1), 8)
(1, 2),¢,8),((2 2), 8)
(1, 3),&,€), ((2.3), 8)
(1, 4), &,€), ((2, 4), 8)
(2, 1), &8, ((2 1), 9)
(((2,2), ¢ 8),((2 2), ¢)
(((2,3), &, 8), (2 3), 8)
(((2,4), ¢ 8),((24), ¢)

CS 341 Homework 17
Turing Machines

lLeM=(K,Z,9,s, {h}), where
K :{q01 qli h}’
>={abQ,0},
S= 0o,

and & is given by the following table,

q o 8(q,0)
Yo a (91, b)
Jo b (91, @
Co Q (h, Q)
Jo 0 (9o, =)
Ch a (%, —)
Ch b (%, —)
Ou a (9o, =)
o} 0 (0, -)

(a) Trace the computation of M starting from the configuration (qo, ¢aabbba).
(b) Describe informally what M does when started in g, on any square of atape.

2. Repeat Problem 1 for the machineM = (K, %, 9, s, {h}), where
K ={do, a1, G, h},
>={ab,0Q,0},
S= 0o,
and & is given by the following table (the transitions on ¢ are &(q, ¢) = (q, ¢), and are omitted).

q o 8(q,0)

o a CR)
o b (%, =)
Qo a (9o,)
Ch a R
L b (%, -)
G a (9, <)
02 a (%, -)
02 b (%, -)
02 Q (h, Q)

Start from the configuration (g, 0abbQbbO0aba).

3. Let M bethe Turing machineM = (K, Z, 9, s, { h}), where

K ={do, O, G, h},
> ={a 0, },
S=Qos
and & is given by the following table.
Let n> 0. Describe carefully what M does when started in the configuration (g, 0Qa’a).

Homework 17 Turing Machines

q o 6(q,0)

o a (%, <)
Jo d (90,)
o 0 (%, —)
Ch a (02,)
ql D (hv D)

L 0 (%, —)
02 a (92, @

02 Qa (Qo, <)
0 0 (%, —)

4. Design and write out in full a Turing machine that scansto the right until it finds two consecutive a's and then
halts. The alphabet of the Turing machine should be {a, b, 14, 0}.

5. Give a Turing machine (in our abbreviated notation) that takes asinput astring w [{a, b} * and squeezes out
the as. Assume that the input configuration is (s, ¢dw) and the output configuration is (h, 0Qw"), wherew' = w
with all the a's removed.

6. Give a Turing machine (in our abbreviated notation) that shiftsits input two characters to the right.
Input: awd
Output: Qaaawd

7. (L & P5.7.2) Show that if alanguage is recursively enumerable, then there is a Turing machine that
enumerates it without ever repeating an element of the language.

Solutions

1. (a) Of - Of - o, Ogabbba
Oz, ¢babbba

y abd/ - o, ¢babbba

q0 \ al G, Obbbbba

alb; b/a 4 o, Obbbbba
o/ Cll

0z, ¢bbabba
o, ¥bbabba
0z, Obbaaba
@ o, Obbaaba
0z, Obbaaaa
o, Obbaaaa
0, Obbaaab

o, Obbagab
h, Obbaasb

(b) Converts al asto b's, and vice versa, starting with the current symbol and moving right.

Homework 17 Turing Machines 2

2. (a) b,a/ - al/ ~ ab/- o, ¢abbQbbO0aba

A 0o, 0abbAbb00aba
N al . bl - (o, 0abbabbO00aba ...
q0 " al @ G, 0abbbbO00aba

i gy, abbbblUaba ...
a

—

= G, 0abbObbaaba
0, ¢abbQbbQ0aba

@ h, ¢abbObbO0aba

(b) M goesright until if finds an a, then left until it finds a b, then right until it finds a blank.

3. Q/Q N go,0ldaaaaa

ala
‘ gl, ¢Qaaaaa
y al \ ald g2, {0aaala
qo0 "\ gl @ 0l - g0, ¥Qaaala
O gl, ¢Qaaala
Ol - Q/a g2, 00abala
g0, ¢0alala
gl, ¢Qalala
@ h, 0Qadala

[

M changes every other a, moving left from the start, to ablank. If nisodd, it loops. If niseven, it halts.

4, M= (K, Z, 9, s, {h}), where
y al - y ala K:{qO,ql, h},
O e O) B 5 5
b,a/ - S=0o
o (T

5. Theideahereisthat first we'll push all b'sto the left, thus squeezing all the asto theright. Then we'll just
replace the aswith blanks. In more detail: scan the string from left to right. Every timewefind an g, if there are
any b'sto theright of it we need to shift them left. So scan right, skipping as many ds as there are. When we
find ab, swap it with thelast a= That squeezes one afurther to the right. Go back to the left end and repeat.
Eventually all the aswill come after all the b's. At that point, when we look for ab following an a, all we'll find
isablank. At that point, we just clean up by rewriting all the as as blanks.

¥ |
>Rag a }Rb,a b E\L bL,
a a

a

Homework 17 Turing Machines 3

6. Theideaisto start with the rightmost character of w, rewrite it as a blank, then move two squaresto the right
and plunk that character back down. Then scan left for the next leftmost character, do the same thing, and so
forth.

- |
>L___az j0R%L L,

g
Ru3

7. Suppose that M isthe Turing machine that enumeratesL. Then construct M* to enumerate L with no
repetitions: M* will begin by simulating M. But whenever M outputs a string, M* will first check to seeif the
string has been output before (see below). If it has, it will just continue looking for strings. If not, it will output
it, and it will also write the string, with #in front of it, at the right end of the tape. To check whether a string has
been output before, M* just scans its tape checking for the string it is about to output.

Homework 17 Turing Machines 4

CS 341 Homework 18
Computing with Turing Machines

1. Present Turing machines that decide the following languages over {a, b}:
(@0
(b) {€}
(©){a
(d) {a}*

2. Consider the simple (regular, in fact) languageL = {w O {ab}* : |w|iseven}
(a) Give a Turing machine that decidesL.
(b) Give a Turing machine that semidecidesL.
3. Give a Turing machine (in our abbreviated notation) that accepts L = {ah™a" : m > n}
4. Give a Turing machine (in our abbreviated notation) that acceptsL = {ww : w [{a, b} *}

5. Give a Turing machine (in our abbreviated notation) that computes the following function from stringsin { a,
b}* to stringsin {a, b} * : f(w) =ww".

6. Give a Turing machine that computes the function f: {a,b,c}* — N (theintegers), where f(w) = the number of
as(inunary) inw.

7. Let w and x be any two positive integers encoded in unary. Show a Turing machine M that computes
f(w, X) =w + Xx.

Represent the input to M as
Oldw; x4

8. Two's complement form provides a way to represent both positive and negative binary integers. Suppose that
the number of bits allocated to each number isk (generally the word size). Then each positive integer is
represented simply asits binary encoding, with leading zeros. Each negative integer n is represented as the result
of subtracting |n| from 2%, where k is the number of bits to be used in the representation. Given afixed k, it is
possible to represent any integer n if -2* < n< 2“*-1. The high order digit of each number indicatesits sign: it
is zero for positive integers and 1 for negative integers.
Examples, for k = 4:
0=0000, 1=0001, 2=0010, 3=0011, 4=0100, 5=0101, 6=0110, 7=0111

-1=1111, -2 =1110, -3 = 1101, -4 = 1100, -5 = 1011, -6 = 1010, -7 = 1001, -8 = 1000
Since Turing machines don't have fixed length words, we'd like to be able to represent any integer. We will
represent positive integers with asingle leading 0. We will represent each negative integer n as the result of
subtracting n from 2, wherei is the smallest value such that 2' = |n|. For example, -65 will be represented as
1111111, since 2’ (128) = 65, so we subtract 65 (01000001 in binary) from 2° (in binary, 100000000). We need
the extra digit (i.e., we subtract from 2** rather than from 2') because, in order for a positive number to be
interpreted as positive, it must have aleading 0, thus consuming an extra digit.

Let w be any integer encoded in two's complement form. Show a Turing machine that computes f(w) = -w.

Homework 18 Computing with Turing Machines 1

Solutions
1 (a) We should rgject everything, since no strings are in the language.

>n

(b) Other than the left boundary symbol, the tape should be blank: ¢QQ0Q

>R
1
y

(c) Just thesinglestringa: ¢Qadd

-0 AN
4

>R__a JR—O)y

(d) Any number of as:

v
>R

) N
n y

2.(a) ab (b) ab

>R —ab—P R >R —ab—pR
s
Ell Ell Q
y n y

Homework 18 Computing with Turing Machines

3. Theideais to make a sequence of passes over theinput. On each pass, we mark off (with d, e, and f) a
matching a b, and a. This corresponds to the top row of the machine shown here. When there are no matching
groups left, then we accept if there is nothing left or if there are b'sin the middle. If there is anything else, we
reject. It turnsout that a great deal of this machineis essentially error checking. We get to the R on the second
row as soon aswe find the first "extra’ b. Wecanloopinitaslong aswefind b's. If wefind asweregject. If we
find a blank, then the string had just b's, which is okay, so we accept. Once we find an f, we have to go to the
separate state R on the third row to skip over the f's and make sure we get to the final blank without either any
more b's or any more as.

d e b
@R —b—pe _}R —a—PfL
f
Q f ab
R

4. The hard part here is that we don't know where the middle of the string is. So we don't know where the
boundary between the first occurrence of w ends and the second begins. We can break this problem into three
subroutines, which will be executed in order:

(1) Find the middle and mark it. If there's alone character in the middle (i.e., the length of the input string isn't
even), then rgject immediately.

(2) Bounce back and forth between the beginning of the first w and the beginning of the second, marking off
charactersif they match and rejecting if they don't.

(3) If we get to the end of the w's and everything has matched, accept.

Let's say alittle more about step (1). We need to put a marker in the middle of the string. The easiest thing to do
isto make a double marker. Well use##. That way, we can start at both ends (bouncing back and forth), moving
amarker one character toward the middle at each step. For example, if we start with the tape 0QaabbaabblA,
after one mark off step well have ¢Qatabbaab#bU10], then 0Qaattbbaatbbd0A, and finally
OQaabb#taabbdQ. So first we shift the whole input string two sgquares to the right on the tape to make room
for the two markers. Then we bounce back and forth, moving the two markers toward the center. If they meet,
we've got an even length string and we can continue. |f they don't, we regject right away.

Homework 18 Computing with Turing Machines 3

5. Theideaisto work from the middle. Well scan right to the rightmost character of w (which we find by
scanning for the first blank, then backing up (left) one square. We'l rewrite it so we know not to deal with it
again (aswill become 1's; b'swill become 2's.) Then we move right and copy it. Now if we scan back left past
any 1'sor 2's, we'lll find the next rightmost character of w. We rewriteitto al or a2, then scan right to a blank
and copy it. We keep this up until, when we scan back to the left, past any 1'sor 2's, we hit ablank. That means
we've copied everything. Now we scan to the right, replacing 1's by asand 2's by b's. Finally, we scan back to
the left to position the read head to the left of w.

>R, L a 1R a 12212
b :, lCI
Rp” b RE—Tn
1
ab x\
b
L

6. Theidea hereisthat we need to write a 1 for every aand we can throw away b'sand c's. We want the 1'sto
end up at the left end of the string, so then al we have to do to clean up at theend is erase @l the b'sand c's to the
right of the areawith the 1's. So, we'll start at the left edge of the string. Welll skip over b'sand c's until we get
toana. At that point, rewrite it asb so we don't count it again. Then (remembering it in the state) scan left until
we get to the blank (if thisisthefirst 1) or we get to a 1. In either case, move one square to the right and write a
1. We arethusoverwriting ab or ac, but we don't care. We're going to throw them away anyway. Now start
again scanning to the right looking for an a. At some point, we'll come to the end of string blank instead. At that
point, just travel leftward, rewriting all the b's and c's to blank, then cross the 1's and land on the blank at the | eft
of the string.

- |
>R__a)bl R1
b,C U&
b.c a
16—

7. All we have to do is to concatenate the two strings. So shift the second one | eft one square, covering up the
semicolon.

>RR_1 L1

|

LUL

Homework 18 Computing with Turing Machines 4

8. Do a couple of examples of the conversion to see what's going on. What you'll observe is that we want to scan
from theright. Initially, we may see some zeros, and those will stay as zeros. If we ever see a1, then we rewrite
thefirst oneasal. After that, we're dealing with borrowing, so we swap al digits: every zero becomes a one and
every one becomes a zero, until we hit the blank at the end of the string and halt.

- I
>R, L 0 }0

Homework 18 Computing with Turing Machines 5

CS 341 Homework 19
Turing Machine Extensions

1. Consider the language L = {ww"}.
(a) Describe a one tape Turing machine to accept L.

(b) Describe atwo tape Turing machine to accept L.
(c) How much more efficient is the two tape machine?

2. Give (in abbreviated notation) a nondeterministic Turing machine that accepts the language
L ={ww"uu®: w, ul{a b}*}

Solutions

(1) (a) The one tape machine needs to bounce back and forth between the beginning of the input string and the
end, marking off matching symbols.

(b) The two tape machine works as follows: If theinput is€, accept. If not, copy the input to the second tape and
record in the state that you have processed an even number of characters so far. Now, start the first tape at the
left end and the second tape at the right end . Check that the symbols on the two tapes are the same. If not,
reject. If so, move thefirst tape head to the right and the second tape head to the left. Also record that you have
processed an odd number and continue, each time using the state to keep track of whether you’' ve seen an even or
odd number of characters so far. When you reach the end of the input tape, accept if you’ ve seen an even number
of characters. Reject if you've seen an odd number. (The even/odd counter is necessary to make sure that you
reject strings such as aba.)

(c) The one tape machine takes time proportional to the square of the length of the input, since for an input of
length n it will make n passes over the input, each of which takes on average n/2 steps. The two tape machine
takes time that's linear in n. It takes n steps to copy, then another n steps to compare.

2. Theideaisjust to use nondeterminism to guess the location of the boundary between the w and u regions.

Each path will choose a spot, shift the u region to the right, and insert a boundary marker #. Once thisis done,
the machine simply checks each region for ww”. If we get astringin L, one of the guessed paths will work.

Homework 19 Turing Machine Extensions 1

CS 341 Homework 20
Unrestricted Grammars

1. Find grammars that generate the following languages:
(@ L={ww:w{a b}*}

yL={a% :n=0}

(©L={db*c:n=1}

(d) L ={w": wisthe social security number of aliving American citizen}

(e) L ={wc"d": w O{a, b}* and m = the number of a'sinw and n equals the number of b'sin w}

2. Find agrammar that computes the function f(w) = ww, wherew O {a, b} *.
Solutions

1.(a L={ww:w0O{a b}*}

Thereisn't any way to generate the two w’ s in the correct order. Suppose we try. Then we could get aSa.
Suppose we want b next. Then we need Sato become bSab, since the new b hasto come after the athat’s
aready there. That could work. Now we have abSab. Let's say we want anext. Now Sab has to become aSaba.
The problem is that, as the length of the string grows, so does the number of rules we'll need to cope with all the
patterns we could have to replace. In afinite number of rules, we can’t deal with replacing S (which we need to
do to get the next character in the first occurrence of w), and adding a new character that is arbitrarily far away
fromS.

The other approach we could try would be havearule S — WW, and then let W generate astring of dsand b's.
But thiswon't work, since we have no way to control the expansion of the two W's so that they produce the same
thing.

So what we need to do is to generate ww" and then, carefully, reverse the order of the charactersin w®. What
we'll doisto start by erecting awall (#) at the right end of the string. Then we' Il generateww®. Then, ina
second phase, we'll take the charactersin the second w and, one at atime, starting with the leftmost, move it right
and then move it past thewall. At each step, we move each character up to the wall and then just over it, but we
don’t reverse characters once they get over thewall. Thefirst part of the grammar, which will generate wTw~,
looks like this:

S_.S# Thisinsertsthe wall at the right.

S - aSa

S, - bSb

ST T will mark the left edge of the portion that needs to be reversed.

At this point, we can generate strings such as abbbTbbba#. What we need to do now isto reverse the string of
asand b'sthat isbetween T and #. To do that, we let T spin off amarker Q, which we can pass rightward
through the string. Asit movesto theright, it will take thefirst aor b it finds with it. It does this by swapping the
character it is carrying (the one just to the right of it) with the next one to the right. It also movesitself one
square to theright. The four rules marked with * accomplish this. When Q’s character getsto the # (the rules
marked **), the a.or b will swap places with the # (thus hopping the fence) and the Q will go away. We can keep
doing thisuntil al the @ sand b’s are behind the fence and in the right order. Then the final T# will drop out.
Here are the rules for this phase:

Homework 20 Unrestricted Grammars 1

T-5TQ
Qaa - aQa
Qab - bQa
Qbb - bQb
Qba - aQb
Qa# _ #a **%

Qb# - #b **

T# - €

So with R as given above, thegrammar G=({S, S, #, T, Q, a b}, {a b}, R, S}

* %k ¥ X

b L={a® :n=0}

Theideahereisfirst to generate the first string, which isjust a. Then think about the next one. Y ou can derive it
by taking the previous one, and, for every a, writetwo a's. So we get aa. Now to get the third one, we do the
samething. Each of the two a s becomes two and we have four, and so forth. So we need arule to get us started
and to indicate the possibility of duplication. Then we need rules to actually do the duplication. To make
duplication happen, we need a symbol that gets generated by S indicating the option to repeat. We'll use P.
Since duplication can happen an arbitrary number of times, we need P to spin off as many individual duplication
commands aswe want. We'll use R for that. The one other thing we need isto make sure, if we start a
duplication step, that we finishit. In other words, suppose we currently have aaaa. If we start duplicating the a's,
we must duplicate all of them. Otherwise, we might end up with, for example, seven as. Sowe'll introduce a
left edge marker, #. Once we fire up a duplication (by creating an R), we'll only stop (i.e., get rid of R) when R
has made it all the way to the other end of the string (namely the left end since it starts at theright). So we get
the following rules:

S - #aP P lets us start up duplication processes as often as we like.

P-e When we' ve done as many as we want, we get rid of P.

P- RP R will actually do a duplication by moving leftward, duplicating every ait sees.

aR - Raa Actually duplicates one a, and moves R one square to the left so it moves on to the next a
#R - # Get rid of R onceit's made it all the way to the | eft

#o € Get of # at the end

So with R as given above, thegrammar G=({S, P, R, #, a, b}, {a, b}, R, S}

(L={db*c™:n=1}

Thisoneisvery similar to a'b"c". The only differenceisthat we will churn out b'sin pairs and c'sin triples each
time we expand S. So we get:

S - aBSccc

S - aBccc

Ba - aB

Bc - bbc

Bb - bbb

So with R as given above, thegrammar G= ({S, B, a, b, ¢}, {a b, c}, R, S}

(d) L ={w": wisthe social security number of aliving American citizen}

Thisoneisregular. Thereisafinite number of such social security numbers. So we need one rule for each
number. Eachruleisof theform S — <valid number>. So with that collection of rules as R, the grammar G =
({s,0,1,2,3/4,56,7,89},{0,1,2,3,4,56,7,8 9,R, S}

(e) L ={wc"d": w O{a, b}* and m = the number of a'sinw and n equals the number of b'sin w}

Theidea here isto generate a c every time we generate an a and to generate ad every time we generate ab. Welll
do this by generating the nonterminals C and D, which we will use to generate ¢'s and d's once everything isin
theright place. Once we've finished generating all the ds and b's we want, the next thing we need to do isto get

Homework 20 Unrestricted Grammars 2

al the D'sto the far right of the string, all the C's next, and then have the a's and b's |eft alone at the left. We
guarantee that everything must line up that way by making sure that C can't become ¢ and D can't become d
unlessthings areright. To do this, we requirethat D can only become d if it'sall the way to theright (i.e, it's
followed by #) or it'sgot ad toitsright. Similarly with C. We can do thiswith the following rules;

S S#
S - aSC
S, - bS,D
S - ¢€
DC - CD
D# - d
Dd - dd
C#-c
Cd - cd
Cc - cc
o€

So with R as given above, thegrammar G=({S, S, C, D, #,a,b,c,d},{a b,c, d},R, S}

2. We need to find agrammar that computes the function f(w) = ww. So we'll get inputs such as SabaS. Think of
the grammar we'll build as a procedure, which will work as described below. At any given time, the string that
has just been derived will be composed of the following regions:

<the part of w that S <the part of w that T (inserted when the <the part of the W (also
has already been has not yet been first character moves second w that has
inserted
copied> copied, which may into the copy region) been copied so far, when T
have within it a which may have is)
character (preceded by #) within it a character
that is currently being (preceded by %) that
copied by being moved iscurrently being
through the region> moved through the
region>

Most of the rules come in pairs, one dealing with an a, the other with b.

SS - ¢ Handles the empty string.

Sa - aSta Move S past the first ato indicate that it has already been copied. Then start copying it by
introducing a new a, preceded by the special marker #, which well use to push the new ato the
right end of the string.

Sb - bSHb Same for copying b.

#aa - afta Move the awe're copying past the next character if it'san a.

#ab - b#a Move the awe're copying past the next character if it'sab.

#ba - &b Same two rules for pushing b.

#bb - b#b "

#aS - #aTW Weve gotten to the end of w. Thisisthefirst character to be copied, so theinitial Sis at the end
of w. We need to create a boundary between w and the copied w. T will be that boundary. We
also need to create a boundary for the end of the copied w. W will be that boundary. T and W
are adjacent at this point because we haven't copied any charactersinto the copy region yet.

#0S - #aTW Sameif we get to the end of w pushing b.

#al - T%a Jump the awe're copying into the copy region (i.e., to theright of T). Get rid of #, since we're
donewith it. Introduce %, which we'll use to push the copied a through the copy region.

#OT - T%b Sameif we're pushing b.

Homework 20 Unrestricted Grammars 3

%aa — a%a

%ab - b%a
%ba - a%b
%bb - b%b
%aW - aw
%bW - bw
ST - ¢

Push ato the right through the copied region in exactly the same way we pushed it through w,
except we're using % rather than # as the pusher. Thisrule pushesapast a

Pushes a past b.

Same two rules for pushing b.

We've pushed an a all the way to the right boundary, so get rid of %, the pusher.

Same for a pushed b.

All the characters from w have been copied, so they're al to the left of S, which causes Sto be
adjacent to the middle marker T. We can now get rid of our special walls. Herewe get rid of S
and T.

Gid rid of W. Notethat if we do this before we should, there's no way to get rid of %, so any
derivation path that doesthiswill fail to produce astringin {a, b}*.

So with R as given above, the grammar G = ({S, T, W, #, %,a, b}, {a, b}, R, S}

Homework 20

Unrestricted Grammars 4

CS 341 Homework 21
Undecidability

1. Which of the following problems about Turing machines are solvable, and which are undecidable? Explain
your answers carefully.

(a) To determine, given a Turing machine M, a state g, and a string w, whether M ever reaches state g when
started with input w from itsinitia state.

(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when
started with input w.

(c) To determine, given two Turing machines, whether one semidecides the complement of the language
semidecided by the other.

(d) To determine, given a Turing machine M, whether the language semidecided by M isfinite.

2. Show that it is decidable, given a pushdown automaton M with one state, whether L(M) = 2*. (Hint: Show
that such an automaton accepts all strings if and only if it accepts all strings of length one.)

3. Which of the following problems about context-free grammars are solvable, and which are undecidable?
Explain your answers carefully.

(a) To determine, given a context-free grammar G, is€ [L(G)?

(b) To determine, given a context-free grammar G, is{e} = L(G)?

(c) To determine, given two context-free grammars G, and G, isL(G,) 0 L(Gy)?

4. The nonrecursive languages L that we have discussed in class all have the property that either L or the
complement of L isrecursively enumerable.

(a) Show by a counting argument that there is alanguage L such that neither L nor its complement is recursively
enumerable.

(b) Give an example of such alanguage.

Solutions
1. (a) To determine, given a Turing machine M, a state g, and a string w, whether M ever reaches state g when
started with input w from itsinitial state. Thisisnot solvable. We can reduce H to it. Essentialy, if we can tell
whether amachine M ever reaches some state g, then let g be M's halt state (and we can massage M so it has only
one halt state). If it ever getsto q, it must have halted. More formally:

L,=H= {s="M""w" : M halts on input string w}

U 1

(M, L,= {s:"M" "w" "q" : M reaches state g when started with input w from itsinitial state}
Let T’ create, from M the machine M* asfollows. Initially M* equals M. Next, anew halting state H is created in
M*. Then, from each state that was a halting statein M, we create transitionsin M* such that for all possible
values of the current tape square, M* goesto H. We create no other transitionsto H. Notice that M* will end up
in H in precisely the same situations in which M halts.

NOW Iet T("M" "W") = '['("M") "Wll "HII

So, if M, exists, then M, exists. It invokes T' to create M*. Then it passes"M*", "w", and "H" to M, and returns
whatever M, returns. But M4 doesn't exist. So neither does M.

Homework 21 Undecidability 1

(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when
started with input w. Thisoneis solvable. We will assume that M is deterministic. We can build the deciding
machine D asfollows. D starts by simulating the operation of M onw. D keeps track on another tape of each
configuration of M that it has seen so far. Eventually, one of the following things must happen:

1. M movesitshead to theleft. Inthis case, we say yes.

2. M isstuck on some square s of the tape. In other words, it isin some state p looking at some square s on the
tape and it has been in this configuration before. If this happensand M didn't go left yet, then M simply
hasn't moved off of s. And it won't from now on, since it's just going to do the same thing at this point asit
did the last time it was in this configuration. So we say no.

3. M moves off the right hand edge of the input w. So it isin some state p looking at a blank. Within k steps (if
k isthe number of statesin M), M must repeat some state p. If it does this without moving left, then again we
know that it never will. In other words, if the last time it was in the configuration in which it was in state p,
looking at a blank, there was nothing to the right except blanks, and it can't move left, and it isagain in that
same situation, it will do exactly the same thing again. So we say no.

(c) To determine, given two Turing machines, whether one semidecides the complement of the language
semidecided by the other. Thisoneis not solvable. We can reduce to it the problem, "Given a Turing machine
M, isthere any string at all on which M halts?' (Whichisequivaent to"IsL(M) = 0?7") In the book we show
that this problem is not solvable. What well do isto build a machine M* that semidecides the language >*,
which is the complement of the language [J. If we could build a machine to tell, given two Turing machines,
whether one semidecides the complement of the language semidecided by the other, then to find out whether any
given machine M accepts anything, we'd pass M and our constructed M* to this new machine. If it saysyes, then
M accepts . If it says no, then M must accept something. Formally:

L;= {s="M"M haltson some string w}
U 1
(My) L= {s="M;""M,;": M, decides the complement of the language semidecided by M}

M accepts strings over someinput alphabet 2. Let T construct a machine M* that semidecides the language >*.
Thent("M") ="M" "T'(M)".

So, if M, exists, then M, exists. It invokesT' to create M*. Then it passes"M" and "M*" to M, and returns the
opposite of whatever M, returns (since M2 saysyesif L(M) = [and M1 wantsto say yesif L(M) # [J). But M,
doesn't exist. So neither does M.

(d) To determine, given a Turing machine M, whether the language semidecided by M isfinite. Thisoneisn't
solvable. We can reduce to it the problem, "Given a Turing machine M, does M halt on €?7' We'll construct,
from M, a new machine M*, which erases itsinput tape and then simulates M. M* haltson al inputsiff M halts
one. If M doesn't halt on g, then M* halts on no inputs. So there are two situations: M* haltson all inputs (i.e.,
L(M*) isinfinite) or M* haltson no inputs (i.e., L(M*) isfinite). So, if we could build a Turing machine M, to
decide whether L(M*) isfinite or infinite, we could build a machine M, to decide whether M haltson .
Formally:

L= {s="M"M hdtson g}
U 1

(M) L= {s="M"isfinite}

Homework 21 Undecidability 2

Let T construct the machine M* from "M" as described above.

So, if M; exists, then M, exists. It invokest to create M* which accepts a finite language precisely if M accepts
€. But M; doesn't exist. So neither does M.

2. M only hasone state S. If Sisnot afinal state, then L(M) = [0, which is clearly not equal to *, so we say no.
Now suppose that Sisafinal state. Then M acceptse. Doesit aso accept anything else? To accept any single
character cin Z, there must be atransition ((S, c, €), (S, €)). In other words, we must be ableto end up in Swith
an empty stack if, looking at an empty stack, we see c. If thereisnot such atransition for every element c of Z,
then we say no, since we clearly cannot get even al the one character stringsin >*. Now, suppose that all those
required transitions do exist. Then, we can stay in S with an empty stack (and thus accept) no matter what
character we see next and no matter what is on the stack (since these transitions don't check the stack). So, if M
accepts all stringsin Z* of length one, then it accepts all stringsin *. Notethat if M is deterministic, then if it
does have all the required transitions it will have no others, since al possible configurations are accounted for

3. () To determine, given a context-free grammar G, is€ [1 L(G) Thisis solvable by using either top down or
bottom up parsing on the string €.

(b) To determine, given a context-free grammar G, is{€} =L(G) Thisissolvable. By the context-free
pumping theorem, we know that, given a context-free grammar G generating alanguage L(G), if thereisastring
of length greater than BT in L, then vy can be pumped out to create a shorter string also in L (the string must be
shorter since vy| >0). We can, of course, repeat this process until we reduce the original string to one of length
lessthan B'. Thismeansthat if there any stringsin L, there are some strings of length lessthan B™. So, to see
whether L ={¢}, we do the following: First see whether € 0 L(G) by parsing. If not, wesay no. If eisinL, then
we need to determine whether any other stringsarealsoinL. To do this, wetest al stringsin >* of length up to
B™. If wefind one, wesay no, L # {¢}. If wedon' find any, we can assert that L = {€}. Why? If thereisa
longer string in L and we haven't found it yet, then we know, by the pumping theorem, that we could pump out vy
until we got a string of length B” or less. If € werenot in L, we could just test up to length B™ and if we didn't
find any elements of L at all, we could stop, sinceif there were bigger ones we could pump out and get shorter
ones but there aren't any. However, because € isin L, what about the case where we pump out and get €? That's
why we go up to B™. If there are any long strings that pump out to €, then there is a shortest such string, which
can't be longer than B™ since that's the longest string we can pump out (by the strong version of the pumping
theorem).

(c) To determine, given two context-free grammars G, and G,, isL(G,) [0 L(G;) Thisisn't solvable. If it were,
then we could reduce the unsolvable problem of determining whether L(G,) = L(G,) toit. Noticethat L(G;) =
L(Gy) iff L(Gy) U L(G,) and L(G,) O L(Gy). So, if we could solve the subset problem, then to find out whether
L(Gy) = L(Gy), dl wedo is ask whether the first language is a subset of the second and vice versa. If both
answers are yes, we say yes. Otherwise, we say no. Formally:

Li= {s:s=G; G, G; and G, are context-free grammars, and L(G;) = L(Gy) }

U 1
(My) Lo={s:s=G; G, G;and G, are context-free grammars, and L(G,) I L(G,) }
If M, exists, then M (G, Gy) = Myx(G; Gy) AND My(G;, G;). To write thisout in our usual notation so that the last

function that gets applied is M, is sort of tricky, but it can, of course be done: Don't worry about doing it. If you
can write any function for M, that is guaranteed to be recursive if M, exists, then you've done the proof.

Homework 21 Undecidability 3

4. (a) If any language L isrecursively enumerable, then there is a Turing machine that semidecidesit. Every
Turing machine has a description of finite length. Therefore, the number of Turing machines, and thus the
number of recursively enumerable languages, is countably infinite (since the power set of a countable set is
countably infinite). If, for some language L, its complement isre, then it must have a semideciding Turing
machine, so there is a countably infinite number of languages whose complement is recursively enumerable. But
there is an uncountable number of languages. So there must be languages that are not recursively enumerable
and do not have recursively enumerable complements.

(b) L ={"M" : M haltson the input 0 and M doesn't halt on the input 1}.

The complement of L ={"M" : M doesn't halt on the input O or M halts on the input 1}. Neither of these
languages is recursively enumerable because of the doesn't halt piece.

Homework 21 Undecidability 4

CS 341 Homework 22
Review

1. Given the following language categories:

L isfinite.

L isnot finite but isregular.

L isnot regular but is deterministic context free

L isnot deterministic context free but is context free

L isnot context free but is Turing decidable

L isnot Turing decidable but is Turing acceptable

L isnot Turing acceptable

Assign the appropriate category to each of the following languages. Make sure you can justify your answer.
a___ {dbP":k=1lork=2n=0}

b. {db":k=0ork=1,n=0}
c.__ {dbc": n=0}

d._ {dbc": n=0,m=0}

e {db":nz=00a

f.__ {d@D™: nisprimeand miseven}
g {db"c™ : n=0,m=0}

h. {db"¢™ : n=0,m=0}
i
b

K.

l.

m.

n.
o_

S SR
q___

QFWQQWP

{abm :n=0,m=0}

{xy : xOa*,yOb* x| =y}

_ {xy:xDOa,yda, xl=1ly}

_ Ax:x0O{ab,c}*, andx has5 or more a's}

___{"M": M accepts at least 1 string}

____{"M":MisaTuring machinethat halts on input € and ['M"| < 1000}

{"M" : M isaTuring machine with < 50 states}

{"M" : M isaTuring machine such that L (M) = a*}

{x: xO{A,B,C,D,E,F, G}, and x isthe answer you write to this question}

Solutions

a_D {db":k=1lork=2n=0}

We haven't discussed many techniques for proving that a context free language isn’'t deterministic, so we can’t
prove that thisoneisn’'t. But essentially the reason thisoneisn’t is that we don’t know what to do when we see
b's. Clearly, we can build apdaM to accept thislanguage. AsM reads each a, it pushesit onto the stack. When
it starts seeing b's, it needs to start popping &s. But there’ s no way to know, until either it runsout of b's or it
gets to the n+1% b, whether to pop an afor each b or hold back and pop an afor every other b. So M is not
deterministic.

b. C {db":k=0ork=1,n=0}

Thisoneislooks very similar to a, but it's different in one key way. Remember that the definition of
deterministic context freeisthat it is possible to build a deterministic pdato accept L$. So now, we can build a
deterministic pda M asfollows: Push each a onto the stack. When we run out of a's, the next character will
either be $ (in the case where k = 0) or b (in the case where k = 1). So we know right away which case we're
dealing with. If M seesab, it goesto a state where it pops one b for each aand acceptsif it comes out even. If it
sees $, it goes to a state where it clears the stack and accepts.

c. _E {dbc": n=0}

We proved that thisis recursive by showing a grammar for it in Lecture Notes 24. We used the pumping theorem
to provethat it isn't context free in Lecture Notes 19.

Homework 22 Review 1

d._ _C {db'c™: n=0,m=0}
This oneis context free. We need to compare the @ sto the b’s, but the ¢’ s are independent. So a grammar to
generate thisoneis:

S-AC

A - aAb

A-ce

C-cC

C-c¢
It's deterministic because we can build a pda that always knows what to do: push a's, pop an afor each b, then
simply scan thec'’s.
ee_C {db":n=0r0a
Thisoneisequivalent to b, since a* = a'b™.
f. _E _{db™: nisprimeand miseven}
This oneis recursive because we can write an algorithm to determine whether a number is prime and another one
to determine whether anumber is even. The proof that it is essentially the same as the one we did in class that a™:
nisprimeisnot context free.
g_C {db"¢™ :n=0 m=0}
This oneis context free. A grammar for itis:

S - aSc

S-bSc

S- ¢
It’s deterministic because we can build a deterministic pdaM for it: M pushes each aonto its stack. It also
pushes an afor each b. Then, when it startsseeing C's, it pops one afor each c. If it runsout of @ sand ¢’'s at the
sametime, it accepts.
h. E {db"¢™ : n=0,m=0}
Thisoneissimilar to g, but because the number of ¢’'sisequal to the product of n and m, rather than the sum,
there is no way to know how many ¢’ sto generate until we know both how many a s there are and how many b's.
Clearly we can write an algorithm to do it, so it’srecursive. To provethis, we need to use the pumping theorem.
Letw = a"b"c"M. Call thea's, region 1, the b’ sregion 2, and the ¢’sregion 3. Clearly neither v nor y can span
regions since, if they did, we'd get a string with letters out of order. So we need only consider the following
possibilities:

(1, 1) The number of ¢’swill no longer be the product of n and m.

(1, 2) The number of ¢’swill no longer be the product of n and m.

(1, 3) Ruled out by [vxy| < M.

(2, 2) The number of ¢’swill no longer be the product of n and m.

(2, 3) The number of ¢’swill no longer be the product of n and m.

(3, 3) The number of ¢’swill no longer be the product of n and m.
i. B {db":n=0,m=0}
Thisoneisregular. Itisdefined by the regular expression a*b*. It isn’t finite, which we know from the presence
of Kleene star in the regular expression.
J._C {xy:xOa,ydb*, x =}
Thisoneis equivalent to a'b", which we' ve already shown is context free and not regular. W showed a
deterministic pdato accept it in Lecture Notes 14.
k. B {xy:xOa",yUOar, Xl =}
Thisoneis{w =& : |w|iseven}. We ve shown asimple two state FSM for this one.
I._ B {x:x0O{ab,c}*, andxhas5 or moreads}
This one also hasasimple FSM F that acceptsit. F has six states. It simply countsa’s, up to five. If it ever gets
to 5, it accepts.

Homework 22 Review 2

m.__F {"M":M acceptsat least 1 string}
Thisoneisn’t recursive. We know from Rice’'s Theorem that it can’t be, since another way to say thisis

{"M" : L(M) contains at least 1 string}
We can also show that this oneisn't recursive by reduction, which is done in the Supplementary Materials.
n._ A {"M":MisaTuring machinethat halts oninput € and ['M"| < 1000}
Thisoneisfinite because of the limit on the length of the strings that can be used to describe M. Soit’sfinite
(and thus regular) completely independently of the requirement that M must halt on €. 'Y ou may wonder whether
we can actually build afinite state machine F to accept this language. What we know for sureisthat F exists. It
must for any finite language. Whether we can build it or not is a separate question. The undecidability of the
halting problem tells us that we can’t build an algorithm to determine whether an arbitrary TM M haltson €. But
that doesn’t mean that we can’t look at most Turing Machines and tell. So, here, it islikely that we could write
out al the TMs of length less than 1000 and figure out which ones accept . We could then build adeciding
FSM F. But evenif we can't, that doesn’t mean that no such FSM exists. It just means that we don’t know what
itis. Thisisno different from the problem of building an FSM to accept al strings of the form mm/dd/yy, such
that mm/dd/yy is your birthday. A simple machine F to do this exists. Y ou know how to writeit. | don’t
because | don’t know when your birthday is. But that fact that | don’t know how to build F says nothing about its
existence.
o_ E {"M":M isaTuring machine with < 50 states}
This one looks somewhat similar to n. But it's different in akey way. Thisset isn't finite because thereisno
[imit on the number of tape symbols that M can use. So we can't do the same trick we can do in n, where we
could simply list all the machines that met the length restriction. With even asingle state, | can build aTM
whose description is arbitrarily long. | simply tell it what to do in state one if it’ s reading character 1. Then what
todoif it’sreading character 2. Then character 3, and so forth. There' s no limit to the number of characters, so
there' s no limit to the length of the string | must write to consider all of them. Given that the language is not
finite, we need a TM to decide it. Why? What we need to do isto check to make sure that the string isa
syntactically valid encoding of a Turing Machine. Recall the syntax of an encoding. When we see the first a???
symbol that encodes a tape symbol, we know how many digitsit has. All the others must have the same number
of digits. So we have to remember that number. Since there's no limit to it, we can't remember it in afinite
number of states. Since we need to keep referring to it, we can't remember it on astack. Soweneed aTM. But
the TM is astraightforward program that will always halt. Thusthe languageis recursive.
p_ G {"M":M isaTuring machinesuch that L(M) = a*}
Thisoneisn't recursive. Again, we know that from Rice's Theorem. And we can proveit by reduction, which
we did in the supplementary materials for the more general case of any aphabet >. But thislanguage is even
harder than many we have considered, such asH. Itisn't even recursively enumerable. Why? Informally, the
TM languages that are re are the ones where we can discover positive instances by simulation (like, H, where we
ask whether M halts on a particular w?). But how can we try all stringsin a*? Proving thisformally is beyond
the scope of this class.
g._ A {x: xO{A,B,C,D,E,F G}, and x isthe answer you write to this question}
Thisoneisfinite. Infact, itisalanguage of cardinality 1. Thusit’sregular and there exists an FSM F that
acceptsit. You may feel that there’'s some sort of circularity here. Thereredlly isn't, but even if there were, we
can use the same argument here that we used in n. Even if we didn’t know how to build F, we still know that it
exists.

Homework 22 Review 3

