CS 341 Homework 2 Strings and Languages

1. Let $\Sigma = \{a, b\}$. Let $L_1 = \{x \in \Sigma^* : |x| < 4\}$. Let $L_2 = \{aa, aaa, aaaa\}$. List the elements in each of the following languages L:

(a) $L_3 = L_1 \cup L_2$ (b) $L_4 = L_1 \cap L_2$ (c) $L_5 = L_1 L_4$ (d) $L_6 = L_1 - L_2$

2. Consider the language $L = a^n b^n c^m$. Which of the following strings are in L? (a) ϵ (b) ab (c) c (d) aabc (e) aabbcc (f) abbcc

3. It probably seems obvious to you that if you reverse a string, the character that was originally first becomes last. But the definition we've given doesn't say that; it says only that the character that was originally last becomes first. If we want to be able to use our intuition about what happens to the first character in a proof, we need to turn it into a theorem. Prove $\forall x, a$ where x is a string and a is a single character, $(ax)^R = x^R a$.

4. For each of the following binary functions, state whether or not it is (i) one-to-one, (ii) onto, (iii) idempotent, (iv) commutative, and (v) associative. Also (vi) state whether or not it has an identity, and, if so, what it is. Justify your answers.

- (a) ||: S × S → S, where S is the set of strings of length ≥ 0
 ||(a, b) = a || b (In other words, simply concatenation defined on strings)
- (b) ||: L×L→L where L is a language over some alphabet Σ
 ||(a, b) = {w ∈ Σ*: w = x || y for some x ∈ a and y∈ b} In other words, the concatenation of two languages A and B is the set of strings that can be derived by taking a string from A and then concatenating onto it a string from B.

5. We can define a unary function F to be *self-inverse* iff $\forall x \in Domain(F) F(F(x)) = x$. The Reverse function on strings is self-inverse, for example.

(a) Give an example of a self-inverse function on the natural numbers, on sets, and on booleans.

(b) Prove that the Reverse function on strings is self-inverse.

Solutions

- **1.** First we observe that $L_1 = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb\}.$
 - (a) $L_3 = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa\}$
 - **(b)** $L_4 = \{aa, aaa\}$

there's

more than one way to derive them). Eliminating duplicates (since L is a set and thus does not contain duplicates), we get:

{aa, aaa, baa, aaaa, abaa, baaa, bbaa, aaaaa, aabaa, abaaa, abbaa, baaaa, babaa, bbaaa, bbbaaa, aaaaaa, aabaaa, abbaaa, baaaaa, babaaa, bbbaaaa, bbbaaaa}

(d) $L_6 = \text{every string that is in } L_1 \text{ but not in } L_2: \{\varepsilon, a, b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb\}.$

- **2.** (a) Yes. n = 0 and m = 0.
 - **(b)** Yes. n = 1 and m = 0.
 - (c) Yes. n = 0 and m = 1.
 - (d) No. There must be equal numbers of a's and b's.
 - (e) Yes. n = 2 and m = 2.
 - (f) No. There must be equal numbers of a's and b's.

3. Prove: $\forall x, a$ where x is a string and a is a single character, $(ax)^R = x^R a$. We'll use induction on the length of x. If |x| = 0 (i.e, $x = \varepsilon$), then $(a\varepsilon)^R = a = \varepsilon^R a$. Next we show that if this is true for all strings of length n, then it is true for all strings of length n + 1. Consider any string x of length n + 1. Since |x| > 0, we can rewrite x as yb for some single character b.

$(ax)^{R} = (ayb)^{R}$	Rewrite of x as yb
$= b(ay)^{R}$	Definition of reversal
$= b(y^{R}a)$	Induction hypothesis (since $ x = n + 1$, $ y = n$)
= (b y ^R) a	Associativity of concatenation
$= x^{R}a$	Definition of reversal: If $x = yb$ then $x^{R} = by^{R}$

4. (a) (i) || is not one-to-one. For example, ||(ab, c) = ||(a, bc) = abc.

- (ii) || is onto. Proof: $\forall s \in S$, $||(s, \varepsilon) = s$, so every element of s can be generated.
- (iii) || is not idempotent. $||(a, a) \neq a$.
- (iv) || is not commutative. $||(ab, cd) \neq (cd, ab)$
- (v) \parallel is associative.
- (vi) $\|$ has ϵ as both a left and right identity.
- (b) (i) || is not one to one. For example, Let Σ = {a, b, c}. ||({a}, {bc}) = {abc} = ||({ab}, {c}) (ii) || is onto. Proof: ∀L ⊆ Σ*, ||(L, {ε}) = L, so every element of s can be generated. Notice that this proof is very similar to the one we used to show that concatenation of strings is onto. Both proofs rely

on

the fact that ε is an identity for concatenation of strings. Given the way in which we defined concatenation of languages as the concatenation of strings drawn from the two languages, $\{\varepsilon\}$ is an identity for concatenation of languages and thus it enables us to prove that all languages can be derived from the concatenation operation.

- (iii) || is not idempotent. $||(\{a\}, \{a\}) = \{aa\}$
- (iv) || is not commutative. $||(\{a\}, \{b\}) = \{ab\}$. But $||(\{b\}, \{a\}) = \{ba\}$.
- (v) \parallel is associative.
- (vi) \parallel has { ϵ } as both a left and right identity.
- **5.** (a) Integers: F(x) = -x is self-inverse. Sets: Complement is self-inverse. Booleans: Not is self-inverse.

(b) We'll prove this by induction on the length of the string. Base case: If |x| = 0 or 1, then $x^{R} = x$. So $(x^{R})^{R} = x^{R} = x$. Show that if this is true for all strings of length n, then it is true for all strings of length n + 1. Any string s of length n + 1 can be rewritten as xa for some single character a. So now we have: $s^{R} = a x^{R}$ definition of string reversal $(s^{R})^{R} = (a x^{R})^{R}$ substituting a x^{R} for s^{R}

 $(s^{R})^{R} = (a x^{R})^{R}$ $= (x^{R})^{R}a$ = xa = ssubstituting a x^{R} for s^{R}
by the theorem we proved above in (3) induction hypothesis since xa was just a way of rewriting s