CS 341 Homework 8
Finite Automata, Regular Expressions, and Regular Grammars

1. We showed that the set of finite state machinesis closed under complement. To do that, we presented a
technique for converting a deterministic machine M into a machine M' such that L (M") is the complement of
L(M). Why did we insist that M be deterministic? What happens if we interchange the final and nonfinal states
of anondeterministic finite automaton?

2. Give adirect construction for the closure under intersection of the languages accepted by finite automata.
(Hint: Consider an automaton whose set of statesis the Cartesian product of the sets of states of the two
original automata.) Which of the two constructions, the one given in the text or the one suggested in this
problem, is more efficient when the two languages are given in terms of nondeterministic finite automata?

3. Using the either of the construction techniques that we discussed, construct a finite automaton that accepts
the language defined by the regular expression: a* (ab [ba[J €)b*.

4. Write aregular expression for the language recognized by the following FSM:

a—’
b
b a
a
ab
b
5. Consider the following FSM M:
Q)

(a) Write aregular expression for the language accepted by M.
(b) Give adeterministic FSM that accepts the complement of the language accepted by M.

w

6. Construct a deterministic FSM to accept each of the following languages:
(a) (aba O aabaa)*
(b) (ab)* (aab)*

7. Consider the language L = {w [(g, b)* : w has an odd number of a's}

(a) Write aregular grammar for L.
(b) Use that grammar to derive a (possibly nondeterministic) FSA to accept L.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 1

8. Construct a deterministic FSM to accept the intersection of the languages accepted by the following FSMs:

a a b b
b /)
g

@ b
BN o

9. Consider the following FSM M:

q@/b :@ % : >@D‘”

(a) Give aregular expression forL (M).
(b) Describe L(M) in English.

Solutions

1. We define acceptance for aNDFSA corresponding to the language L as there existing at least one path that
getsusto afinal state. There can be many other paths that don't, but we ignore them. So, for example, we
might accept a string S that gets us to three different states, one of which accepts (which is why we accept the
string) and two of which don't (but we don't care). If we simply flip accepting and nonaccepting states to get a
machine that represents the complement of L, then we still have to follow all possible paths, so that same string
Swill get us to one nonaccepting state (the old accepting state), and two accepting states (the two states that
previously were nonaccepting but we ignored). Unfortunately, we could ignore the superfluous nonaccepting
pathsin the machine for L, but now that those same paths have gotten us to accepting states, we can't ignore
them, and we'll haveto accept S. In other words, we'll accept S as being in the complement of L, even though
we also accepted it asbeing in L. The key isthat in a deterministic FSA, argjecting path actually means reject.
Thus it makes senseto flip it and accept if we want the complement of L. InaNDFSA, arejecting path doesn't
actually mean reject. So it doesn't make senseto flip it to an accepting state to accept the complement of L.

2.

Given two DFA’s M\, = (K1,L,6,8,F1) and M3 =
(K3, £, 82, 83, F2), we wish to construct a new machine M = (X, L, §, s, F) such that L(M) =
L(My) N L(M3). (Notice that of course the alphabets of the 3 DFA’s will be equal.)

Since the regular languages are closed under union and complementation, and since
Linky = m, closure under intersection is already proved. This direct construction
will avoid using the earlier constructions and illustrates a different proof technique.

The hint is to let K = Ky x K3. Thus each state of M is really a pair (g1, q2) of states
from M, and M;. The intuition will be that M simultaneously simulates M, and Mz on a
given input string. M will keep track of what states M; and M; would be in if they were
reading the string. These are two independent pieces of data; hence the use of a pair for
M'’s state.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 2

Initially, M, and M3 start in their start states, s; and s3. Therefore we should let
s = (81, 92).

Now suppose that M, is in some state ¢; € K| and reads symbol ¢. What state does M,
enter? 61(q1,0). Similarly for M;. So we would like M, when in state (q;,q2) and reading
o, to enter state (§1(q1,2),82(q2, 7)); otherwise M would not be correctly keeping track of
what M, and M2 would do."So we define, for all (¢1,¢3) € K and alle € &,

(91, 92)s 0) = ($1(q1, @), 63(g2, 7))

Notice that § : K x T — K. so everything is consistent and correct. Since K = K, x K,
this means 6 is actually a function taking a pair of states (from M; and M-) and a symbol
from L.

We've now got the transitions defined, and M correctly simulates M; and Ma. Le.,

5(s,z) = (q1,q3)
iff
51(81,z) = q1 and §3(s3,2) = ¢3.}

So we only need to define F'. When shouid M accept z? Exactly when both M, and M,
do, since z € L(My) N L(M3) iff z € L(M,) and £ € L(M3). Therefore F should consist of
all those states (¢1,92) € K such that ¢; € F1 and g3 € Fy. This can be written as

F={(q1,92) : 1 € F\ and ¢2 € F3},

or more succinctly as F = Fy x F3.
Thus the complete answer is

M = (K, x K3, L,§ (81,93), F1 x F3)

where '
6((910 “)- ’) = (61(111 ’)o &(”s ’))'

Notice that this assames M; and M; are deterministicc. What if M; and M3 are not
deterministic? We can assume that they are deterministic without loss of generality, because
if they were not, the subset construction can be applied to them to produce equivalent
DFA’s. However, this construction can be modified to work directly on NFA's if desired.
Unfortunately, it gets rather messy because of the following problem:

We are given two NFA’s M) = (K}, E,A1,0,F1) and My =
(K3,Z.A4, 32, F3), and we wish to construct a new machine M = (K, L, A, s, F) such that
L(M) = L(My) N L(Ma).

‘Todﬂuﬂy.éhcm:doynbohmmwhmnmuﬂywit to strings by the
recursive generalization:

§(q.e) = 4
5(q.02) = 6(8(q.0). %)

Le., if it is determined what § does with s singie symbol, then it is determined what § does with a string
simply by tracing through symbol by symbol.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars

If we do the obvious thing and define

A= {((QI- Q). 2, (qlh 22)) : (a2, ﬁ) € Ay and (920 <, qs) € Aﬂ}v

i.e., we make a transition (1,92) = (¢},¢3) in M exactly when there are transitions ¢; — ¢}
in M, and q3 — ¢4 in Ma,then there is trouble. The trouble is that the transitions in an
NFA need not read exactly 1 symbol, so M defined this way will be unable to simulate many
of moves of My and Ma. E.g., if M} has the transition (1,1, aa, q1) and M3 has (32, a, ¢3), you
can see that M will have dificulty keeping in synch. So A will have to be defined much more
cleverly (and compiexly). So it’s much easier to just assume M; and .\ are deterministic.

4. Without using the algorithm for finding aregular expression from an FSM, we can note in this case that the
lower right state is a dead state, i.e., an absorbing, non-accepting state. We can leave and return to the initial
state, the only accepting state, by reading ab along the upper path or by reading ba along the lower path. These

can be read any number of times, in any order, so the regular expression is (ab [J ba)*. Note that € isincluded,
asit should be.

5.(a) € O ((a O ba)(ba)*b)

(b)

6. (a)

ab

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 4

(b)

7. (&) Nonterminal Sisthe starting symbol. We'l use it to generate an odd number of as. Well aso use the
nonterminal E, and it will always generate an even number of as. So, whenever we generate an a, we must

either stop then, or we must generate the nonterminal E to reflect the fact that if we generate any more ds, we
must generate an even number of them.

S-a
S- a
S - bS
E-b
E - bE
E - aS

9. (a) (al bb*aa)* (¢ O bb*(al €))
(b) All stringsin {& b}* that contain no occurrence of bab.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 5

