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CS 341 Homework 9 
Languages That Are and Are Not Regular 

 
1. Show that the following are not regular. 
(a) L = {wwR : w ∈  {a, b}*} 
(b) L = {ww : w ∈  {a, b}*} 
(c) L = {ww' : w ∈  {a, b}*}, where w' stands for w with each occurrence of a replaced by b, and vice versa. 
 
2. Show that each of the following is or is not a regular language.  The decimal notation for a number is the 
number written in the usual way, as a string over the alphabet {-, 0, 1, …, 9}.  For example, the decimal 
notation for 13 is a string of length 2.  In unary notation, only the symbol 1 is used; thus 5 would be represented 
as 11111 in unary notation. 
(a) L = {w : w is the unary notation for a natural number that is a multiple of 7} 
(b) L = {w : w is the decimal notation for a natural number that is a multiple of 7} 
(c) L = {w : w is the unary notation for a natural number n such that there exists a pair p and q of twin primes, 
both > n.}  Two numbers p and q are a pair of twin primes iff q = p + 2 and both p and q are prime.  For 
example, (3, 5) is a pair of twin primes. 
(d) L = {w : w is, for some n ≥ 1, the unary notation for 10n} 
(e) L = {w : w is, for some n ≥ 1, the decimal notation for 10n} 
(f) L = {w is of the form x#y, where x, y ∈  {1}+ and y = x+1 when x and y are interpreted as unary numbers} 
(For example, 11#111 and 1111#11111 ∈  L, while 11#11, 1#111, and 1111 ∉  L.) 
(g) L = {anbj: |n – j| = 2} 
(h) L = {uwwRv : u, v, w ∈  {a, b}+} 
(i) L = {w ∈  {a, b}* : for each prefix x of w, #a(x) ≥ #b(x)} 
 
3. Are the following statements true or false?  Explain your answer in each case.  (In each case, a fixed alphabet 
Σ is assumed.) 
(a) Every subset of a regular language is regular. 
(b) Let L′ = L1 ∩ L2.  If L′ is regular and L2 is regular, L1 must be regular. 
(c) If L is regular, then so is L′ = {xy : x ∈  L and y ∉  L}. 
(d) {w : w = wR} is regular. 
(e) If L is a regular language, then so is L′ = {w : w ∈  L and wR ∈  L}. 
(f) If C is any set of regular languages, ∪ C (the union of all the elements of C) is a regular language. 
(g) L = {xyxR : x, y ∈  Σ*} is regular. 
(h) If L′ = L1 ∪  L2 is a regular language and L1 is a regular language, then L2 is a regular language. 
(i) Every regular language has a regular proper subset. 
(j) If L1 and L2 are nonregular languages, then L1 ∪  L2 is also not regular. 
 
4. Show that the language L = {anbm : n ≠ m} is not regular. 
 
5. Prove or disprove the following statement:  
         If L1 and L2 are not regular languages, then L1 ∪  L2 is not regular. 
 
6. Show that the language L = {x ∈  {a, b}* : x = anbambamax(m,n)} is not regular. 
 
7. Show that the language L = {x ∈  {a, b}* : x contains exactly two more b's than a's} is not regular. 
 
8. Show that the language L =  {x ∈  {a, b}* : x contains twice as many a's as b's} is not regular. 
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9. Let L = {w : #a(w) = #b(w)}.  ( #a(w) = the number of a’s in w.) 
(a) Is L regular? 
(b) Is L* regular? 
 
Solutions  
 
1. (a) L = {wwR : w ∈  {a, b}*}.  L is the set of all strings whose first half is equal to the reverse of the second 
half.  All strings in L must have even length.  If L is regular, then the pumping lemma tells us that ∃  N ≥ 1, such 
that ∀  strings w ∈  L, where |w| ≥ N, ∃  x, y, z, such that w = xyz, |xy| ≤ N, y ≠ ε, and ∀  q ≥ 0, xyqz is in L.  We 
must pick a string w ∈  L and show that it does not meet these requirements. 
 
First, don’t get confused by the fact that we must pick a string w, yet we are looking for strings of the form 
wwR.  These are two independent uses of the variable name w.  It just happens that the problem statement uses 
the same variable name that the pumping lemma does.  If it helps, restate the problem as L = {ssR : s ∈  {a, b}*}. 
 
We need to choose a “long” w, i.e., one whose length is greater than N.  But it may be easier if we choose one 
that is even longer than that.  Remember that the fact that |xy| ≤ N guarantees that y (the pumpable region) must 
occur within the first N characters of w.  If we don’t want to have to consider a lot of different possibilities for 
what y could be, it will help to choose a w with a long first region.  Let’s let w = aNbbaN.  We know that y must 
consist of one or more a’s in the region before the b’s.  Clearly if we pump in any extra a’s, we will no longer 
have a string in L.  Thus we know that L is not regular. 
 
Notice that we could have skipped the b’s altogether and chosen w = aNaN.  Again, we’d know that y must be a 
string of one or more a’s.  Unfortunately, if y is of even length (and it could be: remember we don’t get to pick 
y), then we can pump in all the copies of y we want and still have a string in L.  Sure, the boundary between the 
first half and the second half will move, that that doesn’t matter.  It is usually good to choose a string with a 
long, uniform first region followed by a definitive boundary between it and succeeding regions so that when 
you pump, it’s clearly the first region that has changed. 
 
    (b) L = {ww : w ∈  {a, b}*}.  We’ll use the pumping lemma.  Again, don’t get confused by the use of the 
variable w both to define L and as the name for the string we will choose to pump on.  As is always the case, 
the only real work we have to do is to choose an appropriate string w.  We need one that is long enough (i.e., |w| 
≥ N).  And we need one with firm boundaries between regions.  So let’s choose w = aNbaNb.  Since |xy| ≤ N, we 
know that y must occur in the first a region.  Clearly if we pump in any additional a’s, the two halves of w will 
no longer be equal.  Q. E. D.  By the way, we could have chosen other strings for w.  For example, let w = 
baNbaN.  But then there are additional choices for what y could be (since y could include the initial b) and we 
would have to work through them all. 
 
    (c) L = {ww' : w ∈  {a, b}*}, where w' stands for w with each occurrence of a replaced by b, and vice versa.  
We can prove this easily using the pumping lemma.  Let w = aNbN.   Since |xy| ≤ N, y must be a string of all a’s.  
So, when we pump (either in or out), we modify the first part of w but not the second part.  Thus the resulting 
string is not in L. 
 
We could also solve this problem just by observing that, if L is regular, so is L′ = L ∩ a*b*.  But L′ is just anbn, 
which we have already shown is not regular.  Thus L is not regular either. 
  
2. (a) L = {w : w is the unary notation for a natural number that is a multiple of 7}.  L is regular since it can be 
described by the regular expression (1111111)*. 
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    (b) L = {w : w is the decimal notation for a natural number that is a multiple of 7}.  L is regular.  We can 
build a deterministic FSM M to accept it.  M is based on the standard algorithm for long division.  The states 
represent the remainders we have seen so far (so there are 7 of them, corresponding to 0 – 6).  The start state, of 
course, is 0, corresponding to a remainder of 0.  So is the final state.  The transitions of M are as follows: 
 ∀ si ∈  {0 - 6} and ∀  cj ∈  {0 - 9},  δ(si, cj) = (10si + cj) mod 7  
So, for example, on the input 962, M would first read 9.  When you divide 7 into 9 you get 1 (which we don’t 
care about since we don’t actually care about the answer – we just care whether the remainder is 0) with a 
remainder of 2.  So M will enter state 2.  Next it reads 6.  Since it is in state 2, it must divide 7 into 2*10 +6 
(26).  It gets a remainder of 5, so it goes to state 5.  Next it reads 2.  Since it is in state 5, it must divide 7 into 
5*10 + 5 (52), producing a remainder of 3.  Since 3 is not zero, we know that 862 is not divisible by 7, so M 
rejects.  
 
    (c) L = {w : w is the unary notation for a natural number such that there exists a pair p and q of twin primes, 
both > n.}.  L is regular.  Unfortunately, this time we don’t know how to build a PDA for it.  We can, however, 
prove that it is regular by considering the following two possibilities: 

(1) There is an infinite number of twin primes.  In this case, for every n, there exists a pair of twin primes 
greater than n.  Thus L = 1*, which is clearly regular. 

(2) There is not an infinite number of twin primes.  In this case, there is some largest pair.  There is thus 
also a largest n that has a pair greater than it.  Thus the set of such n’s is finite and so is L (the unary 
encodings of those values of n).  Since L is finite, it is clearly regular. 

It is not known which of these cases is true.  But interestingly, from our point of view, it doesn’t matter.  L is 
regular in either case.  It may bother you that we can assert that L is regular when we cannot draw either an 
FSM or a regular expression for it.  It shouldn’t bother you.  We have just given a nonconstructive proof that L 
is regular (and thus, by the way, that some FSM M accepts it).  Not all proofs need to be constructive.  This 
situation isn’t really any different from the case of L′  = {w : w is the unary encoding of the number of siblings 
I have}.  You know that L′ is finite and thus regular, even though you do not know how many siblings I have 
and thus cannot actually build a machine to accept L′. 
 
    (d) L = {w : w is, for some n ≥ 1, the unary notation for 10n}.  So L = {1111111111, 1100, 11000, …}.  L isn’t 
regular, since clearly any machine to accept L will have to count the 1’s.  We can prove this using the pumping 
lemma:  Let w = 1P, N ≤ P and P is some power of 10.  y must be some number of 1’s.  Clearly, it can be of 
length at most P.  When we pump it in once, we get a string s whose maximum length is therefore 2P.  But the 
next power of 10 is 10P.  Thus s cannot be in L. 
 
    (e) L = {w : w is, for some n ≥ 1, the decimal notation for 10n}.  Often it’s easier to work with unary 
representations, but not in this case.  This L is regular, since it is just 100*. 
 
    (f) L = {w is of the form x#y, where x, y ∈  {1}+ and y = x+1 when x and y are interpreted as unary numbers} 
(For example, 11#111 and 1111#11111 ∈  L, while 11#11, 1#111, and 1111 ∉  L.)  L isn’t regular.  Intuitively, it 
isn’t regular because any machine to accept it must count the 1’s before the # and then compare that number to 
the number of 1’s after the #.  We can prove that this is true using the pumping lemma:  Let w = 1N#1N+1.  Since 
|xy| ≤ N, y must occur in the region before the #.  Thus when we pump (either in or out) we will change x but 
not make the corresponding change to y, so y will no longer equal x +1.  The resulting string is thus not in L. 
 
    (g) L = {anbj: |n – j| = 2}.  L isn’t regular.  L consists of all strings of the form a*b* where either the number 
of a’s is two more than the number of b’s or the number of b’s is two more than the number of a’s.  We can 
show that L is not regular by pumping.  Let w = aNbN+2.  Since |xy| ≤ N, y must equal ap for some p > 0.  We can 
pump y out once, which will generate the string aN-pbN+2, which is not in L. 
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    (h) L = {uwwRv : u, v, w ∈  {a, b}+}. L is regular.  This may seem counterintuitive.  But any string of length 
at least four with two consecutive symbols, not including the first and the last ones, is in L.  We simply make 
everything up to the first of the two consecutive symbols u.  The first of the two consecutive symbols is w.  The 
second is wR.  And the rest of the string is v.  And only strings with at least one pair of consecutive symbols 
(not including the first and last) are in L because w must end with some symbol s.  wR must start with that same 
symbol s.  Thus the string will contain two consecutive occurrences of s.  L is regular because it can be 
described the regular expression (a ∪  b)+ (aa ∪  bb) (a ∪  b)+. 
 
    (i) L = {w ∈  {a, b}* : for each prefix x of w, #a(x) ≥ #b(x)}.  First we need to understand exactly what L is.  
In order to do that, we need to define prefix.  A string x is a prefix of a string y iff ∃ z ∈  Σ* such that y = xz.  In 
other words, x is a prefix of y iff x is an initial substring of y. For example, the prefixes of abba are ε, a, ab, 
abb, and abba.  So L is all strings over {a, b}* such that, at any point in the string (reading left to right), there 
have never been more b’s than a’s.  The strings ε, a, ab, aaabbb, and ababa are in L.  The strings b, ba, abba, and 
ababb are not in L.  L is not regular, which we can show by pumping.  Let w = aNbN.  So y = ap, for some 
nonzero p.  If we pump out, there will be fewer a’s than b’s in the resulting string s.  So s is not in L since every 
string is a prefix of itself. 
 
3. (a) Every subset of a regular language is regular.  FALSE.  Often the easiest way to show that a universally 
quantified statement such as this is false by showing a counterexample.  So consider L = a*.  L is clearly 
regular, since we have just shown a regular expression for it.  Now consider L′ = ai: i is prime.  L′ ⊆  L.  But we 
showed in class that L′ is not regular. 
 
    (b) Let L′ = L1 ∩ L2.  If L′ is regular and L2 is regular, L1 must be regular.  FALSE.  We know that the 
regular languages are closed under intersection.  But it is important to keep in mind that this closure lemma (as 
well as all the others we will prove) only says exactly what it says and no more.  In particular, it says that: 
 If L1 is regular and L2 is regular 
  Then L′ is regular.   
Just like any implication, we can’t run this one backward and conclude anything from the fact that L′ is regular.  
Of course, we can’t use the closure lemma to say that L1 must not be regular either.  So we can’t apply the 
closure lemma here at all.  A rule of thumb: it is almost never true that you can prove the converse of a closure 
lemma.  So it makes sense to look first for a counterexample.  We don’t have to look far.  Let L′ = ∅ .  Let L2 = 
∅ .  So L′ and L2 are regular.  Now let L1 = {ai: i is prime}.  L1 is not regular.  Yet L′ = L1 ∩ L2.  Notice that 
we could have made L2 anything at all and its intersection with ∅  would have been ∅ .  When you are looking 
for counterexamples, it usually works to look for very simple ones such as ∅  or Σ*, so it’s a good idea to start 
there first.  ∅  works well in this case because we’re doing intersection.  Σ* is often useful when we’re doing 
union. 
 
    (c) If L is regular, then so is L′ = {xy : x ∈  L and y ∉  L}.  TRUE.  Proof:  Saying that y ∉  L is equivalent to 
saying that y ∈  L.  Since the regular languages are closed under complement, we know that L is also regular.  L′ 
is thus the concatenation of two regular languages.  The regular languages are closed under concatenation.  
Thus L′ must be regular. 
 
    (d) L = {w : w = wR} is regular.  FALSE.  L  is NOT regular.  You can prove this easily by using the 
pumping lemma and letting w = aNbaN. 
 
    (e) If L is a regular language, then so is L′ = {w : w ∈  L and wR ∈  L}.  TRUE.  Proof:  Saying that wR ∈  L is 
equivalent to saying that w ∈  LR.  If w must be in both L and LR, that is equivalent to saying that L′ = L ∩ LR.  
L is regular because the problem statement says so.  LR is also regular because the regular languages are closed 
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under reversal. The regular languages are closed under intersection.  So the intersection of L and LR must be 
regular. 
 
Proof that the regular languages are closed under reversal (by construction):  If L is regular, then there exists 
some FSM M that accepts it.  From M, we can construct a new FSM M′ that accepts LR.  M′ will effectively run 
M backwards.  Start with the states of M′ equal to states of M.   Take the state that corresponds to the start state 
of M and make it the final state of M′.  Next we want to take the final states of M and make them the start states 
of M′.  But M′ can have only a single start state.  So create a new start state in M′ and create an epsilon 
transition from it to each of the states in M′ that correspond to final states of M.  Now just flip the arrows on all 
the transitions of M and add these new transitions to M′. 
 
    (f) If C is any set of regular languages, ∪ C is a regular language.  FALSE.  If C is a finite set of regular 
languages, this is true.  It follows from the fact that the regular languages are closed under union.  But suppose 
that C is an infinite set of languages.  Then this statement cannot be true.  If it were, then every language would 
be regular and we have proved that there are languages that are not regular.  Why is this?  Because every 
language is the union of some set of regular languages.  Let L be an arbitrary language whose elements are w1, 
w2, w3, ….  Let C be the set of singleton languages {{w1}, {w2}, {w3}, … } such that wi ∈  L.  The number of 
elements of C is equal to the cardinality of L.  Each individual element of C is a language that contains a single 
string, and so it is finite and thus regular.  L = ∪ C.  Thus, since not all languages are regular, it must not be the 
case that ∪ C is guaranteed to be regular.  If you’re not sure you follow this argument, you should try to come 
up with a specific counterexample.  Choose an L such that L is not regular, and show that it can be described as 
∪ C for some set of languages C. 
 
    (g) L = {xyxR : x, y ∈  Σ*} is regular.  TRUE.  Why?  We’ve already said that xxR isn’t regular.  This looks a 
lot like that, but it differs in a key way.  L is the set of strings that can be described as some string x, followed 
by some string y (where x and y can be chosen completely independently), followed by the reverse of x.  So, for 
example, it is clear that abcccccba ∈  L (assuming Σ ={a, b, c}).  We let x = ab, y = ccccc, and xR = ba.  Now 
consider abbcccccaaa.  You might think that this string is not in L.  But it is.  We let x = a, y = bbcccccaa, and 
xR = a.  What about acccb?  This string too is in L.  We let x = ε, y = acccb, and xR = ε.  Note the following 
things about our definition of L:  (1) There is no restriction on the length of x.  Thus we can let x = ε.  (2)There 
is no restriction on the relationship of y to x.  And (3) εR = ε.  Thus L is in fact equal to Σ* because we can take 
any string w in Σ* and rewrite it as ε w ε, which is of the form xyxR.  Since Σ* is regular, L must be regular. 
 
    (h) If L′ = L1 ∪  L2 is a regular language and L1 is a regular language, then L2 is a regular language.  
FALSE.  This is another attempt to use a closure theorem backwards.  Let L1 = Σ*.  L1 is clearly regular.  Since 
L1 contains all strings over Σ, the union of L1 with any language is just L1 (i.e., L′ = Σ*).  If the proposition 
were true, then all languages L2 would necessarily be regular.  But we have already shown that there are 
languages that are not regular.  Thus the proposition must be false. 
 
    (i) Every regular language has a regular proper subset.  FALSE.  ∅  is regular.  And it is subset of every set.  
Thus it is a subset of every regular language.  However, it is not a proper subset of itself.  Thus this statement is 
false.  However the following two similar statements are true: 

(1) Every regular language has a regular subset.   
(2) Every regular language except ∅  has a regular proper subset. 

 
    (j) If L1 and L2 are nonregular languages, then L1 ∪  L2 is also not regular.  False.  Let L1 = {anbm, n ≥ m} 
and L2 = {anbm, n ≤ m}. L1 ∪  L2 = a*b*, which is regular. 
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4.  If L were regular, then its complement, L1, would also be regular.  L1 contains all strings over {a, b} that are 
not in L.  There are two ways not to be in L: have any a's that occur after any b's (in other words, not have all 
the a's followed by all the b's), or have an equal number of a's and b's.  So now consider 
 L2 = L1 ∩ a*b* 
L2 contains only those elements of L1 in which the a's and b's are in the right order.  In other words,  
 L2 = anbn 
But if L were regular, then L1 would be regular.  Then L2, since it is the intersection of two regular languages 
would also be regular.  But we have already shown that it (anbn) is not regular.  Thus L cannot be regular. 
 
5. This statement is false.  To prove it, we offer a counter example.  Let L1 = {anbm : n=m} and let L2 =   
{anbm : n ≠ m}.  We have shown that both L1 and L2 are not regular.  However, 
 L1 ∪  L2 = a*b*, which is regular. 
There are plenty of other examples as well.  Let L1 = {an: n ≥ 1 and n is prime}.  Let L2 =  {an: n ≥ 1 and n is not 
prime}.  Neither L1 nor L2 is regular.  But L1 ∪   L2 = a+, which is clearly regular. 
 
6. This is easy to prove using the pumping lemma.  Let w = aNbaNbaN. We know that xy must be contained 
within the first block of a's.  So, no matter how y is chosen (as long as it is not empty, as required by the 
lemma), for any i > 2, xyiz ∉  L, since the first block of a's will be longer than the last block, which is not 
allowed.  Therefore L is not regular. 
 
7. First, let L' = L ∩ a*b*, which must be regular if L is.  We observe that L' = anbn+2 : n ≥ 0.  Now use the 
pumping lemma to show that L' is not regular in the same way we used it to show that anbn is not regular. 
 
8. We use the pumping lemma.  Let w = a2NbN.  xy must be contained within the block of a's, so when we pump 
either in or out, it will no longer be true that there will be twice as many a's as b's, since the number of a's 
changes but not the number of b's.  Thus the pumped string will not be in L.  Therefore L is not regular. 
 
9. (a) L is not regular.  We can prove this using the pumping lemma.  Let w = aNbN.  Since y must occur within 
the first N characters of w, y = ap for some p > 0.  Thus when we pump y in, we will have more a’s than b’s, 
which produces strings that are not in L. 
 
    (b) L* is also not regular.  To prove this, we need first to prove a lemma, which we’ll call EQAB:  ∀ s, s ∈  
L* � #a(s) = #b(s).  To prove the lemma, we first observe that any string s in L* must be able to be 
decomposed into at least one finite sequence of strings, each element of which is in L. Some strings will have 
multiple such decompositions.  In other words, there may be more than one way to form s by concatenating 
together strings in L.  For any string s in L*, let SQ be some sequence of elements of L that, when concatenated 
together, form s.  It doesn’t matter which one.  Define the function HowMany on the elements of L*.  
HowMany(x) returns the length of SQ.  Think of HowMany as telling you how many times we went through the 
Kleene star loop in deriving x.  We will prove EQAB by induction on HowMany(s). 
 
Base case: If HowMany(s) = 0, then s = ε.  #a(s) = #b(s). 
 
Induction hypothesis: If HowMany(s) ≤ N, then #a(s) = #b(s). 
 
Show: If HowMany(s) = N+1, then #a(s) = #b(s). 
 
If HowMany(s) = N+1, then ∃ w,y such that s = wy, w ∈  L*, HowMany(w) = N, and y ∈  L.  In other words, 
we can decompose s into a part that was formed by concatenating together N instances of L plus a second part 
that is just one more instance of L.  Thus we have:  
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 (1) #a(y) = #b(y).      Definition of L  
 (2) #a(w) = #b(w).   Induction hypothesis 
 (3) #a(s) = #a(w) + #a(y)  s = wy 
 (4) #b(s) = #b(w) + #b(y).      s = wy 
 (5) #b(s) = #a(w) + #b(y)    4, 2 
 (6) #b(s) = #a(w) + #a(y)    5, 1 
 (7) #b(s) = #a(s)     6, 3                     Q. E. D. 
 
Now we can show that L* isn’t regular using the pumping lemma.  Let w = aNbN. Since y must occur within the 
first N characters of w, y = ap for some p > 0.  Thus when we pump y in, we will have a string with more a’s 
than b’s.  By EQAB, that string cannot be in L*. 
 
  


