CS 341 Homework 14 Pushdown Automata and Context-Free Grammars

1. In class, we described an algorithm for constructing a PDA to accept a language L, given a context free grammar for L. Let L be the balanced brackets language defined by the grammar $G = (\{S, [,]\}, \{[,]\}, R, S),$ where R =

 $S \rightarrow \varepsilon, S \rightarrow SS, S \rightarrow [S]$

Apply the construction algorithm to this grammar to derive a PDA that accepts L. Trace the operation of the PDA you have constructed on the input string [[][]].

2. Consider the following PDA M:

(a) What is L(M)?

(**b**) Give a deterministic PDA that accepts L(M) (*not* L(M)\$).

3. Write a context-free grammar for L(M), where M is

4. Consider the language L = {ba^{m1}ba^{m2}b...ba^{mn} : n ≥ 2, m1, ..., mn ≥ 0, and mi ≠ mj for some i, j}
(a) Give a nondeterministic PDA that accepts L.

(b) Write a context-free grammar that generates L.

(c) Prove that L is not regular.

Solutions

1. This is a very simple mechanical process that you should have no difficulty carrying out, and getting the following PDA, $M = (\{p, q\}, \{[,]\}, \{S, [,]\}, \Delta, p, \{q\})$, where

$$\begin{split} \Delta &= \{((p, \epsilon, \epsilon), (q, S)), \\ &\quad ((q, \epsilon, S), (q, \epsilon)), ((q, \epsilon, S), (q, SS)), ((q, \epsilon, S), (q, [S])), \\ &\quad ((q, [, [), (q, \epsilon)), ((q,],]), (q, \epsilon))\} \end{split}$$

2. (a)
$$L(M) = \{a^{n}b^{n}a : n \ge 0\}$$

(b)
 $a//aa$
 $b/a/$
 $b/a/$
 $b/a/$

3. Don't even try to use the grammar construction algorithm. Just observe that $L = \{a^n b^n b^m c^p : m \ge p \text{ and } n \text{ and } p \ge 0\}$, or, alternatively $\{a^n b^m c^p : m \ge n + p \text{ and } n \text{ and } p \ge 0\}$. It can be generated by the following rules:

 $\begin{array}{ll} S \rightarrow S_1 S_2 \\ S_1 \rightarrow a S_1 b \\ S_1 \rightarrow \epsilon \\ S_2 \rightarrow b S_2 \\ S_2 \rightarrow b S_2 c \\ S_2 \rightarrow \epsilon \end{array} \qquad (* S_1 \text{ generates the } a^n b^n \text{ part. } */\\ S_2 \text{ generates the } b^m c^p \text{ part. } */\\ \end{array}$

We use state 2 to skip over an arbitrary number of baⁱ groups that aren't involved in the required mismatch. We use state 3 to count the first group of a's we care about.

We use state 4 to count the second group and make sure it's not equal to the first.

We use state 5 to skip over an arbitrary number of baⁱ groups in between the two we care about. We use state 6 to clear the stack in the case that the second group had fewer a's than the first group did. We use state 7 to skip over any remaining baⁱ groups that aren't involved in the required mismatch.

- (b) $S \rightarrow A'bLA'$ /* L will take care of two groups where the first group has more a's */ $S \rightarrow A'bRA'$ /* R will take care of two groups where the second group has more a's */ $L \rightarrow ab | aL | aLa$ $R \rightarrow ba | Ra | aRa$ $A' \rightarrow bAA' | \varepsilon$ $A \rightarrow aA | \varepsilon$
- (c) Let L₁ = ba*ba*, which is obviously regular. If L is regular then
 L₂ = L ∩ L₁ is regular.
 L₂ = baⁿba^m, n ≠ m
 ¬L₂ ∩ L₁ must also be regular.
 But ¬L₂ ∩ L₁ = baⁿba^m, n = m, which can easily be shown, using the pumping theorem, not to be regular.