CS 341 Homework 14

Pushdown Automata and Context-Free Grammars

1. In class, we described an algorithm for constructing a PDA to accept a language L, given a context free grammar for L . Let L be the balanced brackets language defined by the grammar $\mathrm{G}=(\{\mathrm{S},[]\},,\{[]\}, \mathrm{R}, \mathrm{S}$,$) ,$ where $\mathrm{R}=$

$$
\mathrm{S} \rightarrow \varepsilon, \mathrm{~S} \rightarrow \mathrm{SS}, \mathrm{~S} \rightarrow[\mathrm{~S}]
$$

Apply the construction algorithm to this grammar to derive a PDA that accepts L. Trace the operation of the PDA you have constructed on the input string [[][]].
2. Consider the following PDA M:

(a) What is $\mathrm{L}(\mathrm{M})$?
(b) Give a deterministic PDA that accepts $\mathrm{L}(\mathrm{M})($ not $\mathrm{L}(\mathrm{M}) \$)$.
3. Write a context-free grammar for $L(M)$, where M is

4. Consider the language $L=\left\{b a^{m l} b a^{m 2} b \ldots b a^{m n}: n \geq 2, m 1, \ldots, m n \geq 0\right.$, and $m i \neq m j$ for some $\left.i, j\right\}$
(a) Give a nondeterministic PDA that accepts L.
(b) Write a context-free grammar that generates L .
(c) Prove that L is not regular.

Solutions

1. This is a very simple mechanical process that you should have no difficulty carrying out, and getting the following PDA, $\mathrm{M}=(\{\mathrm{p}, \mathrm{q}\},\{[]\},,\{\mathrm{S},[]\},, \Delta, \mathrm{p},\{\mathrm{q}\})$, where

$$
\begin{aligned}
\Delta=\quad & \{(\mathrm{p}, \varepsilon, \varepsilon),(\mathrm{q}, \mathrm{~S})), \\
& ((\mathrm{q}, \varepsilon, \mathrm{~S}),(\mathrm{q}, \varepsilon)),((\mathrm{q}, \varepsilon, \mathrm{~S}),(\mathrm{q}, \mathrm{SS})),((\mathrm{q}, \varepsilon, \mathrm{~S}),(\mathrm{q},[\mathrm{~S}])), \\
& ((\mathrm{q},[,[),(\mathrm{q}, \varepsilon)),((\mathrm{q},],]),(\mathrm{q}, \varepsilon))\}
\end{aligned}
$$

2. (a) $L(M)=\left\{a^{n} b^{n} a: n \geq 0\right\}$
(b)

3. Don't even try to use the grammar construction algorithm. Just observe that $L=\left\{a^{n} b^{n} b^{m} c^{p}: m \geq p\right.$ and n and p $\geq 0\}$, or, alternatively $\left\{a^{n} b^{m} c^{p}: m \geq n+p\right.$ and n and $\left.p \geq 0\right\}$. It can be generated by the following rules:

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{~S}_{1} \mathrm{~S}_{2} & \\
\mathrm{~S}_{1} \rightarrow \mathrm{a} \mathrm{~S}_{1} \mathrm{~b} & / * \mathrm{~S}_{1} \text { generates the } \mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \text { part. } * / \\
\mathrm{S}_{1} \rightarrow \varepsilon & \\
\mathrm{~S}_{2} \rightarrow \mathrm{bS}_{2} & / * \mathrm{~S}_{2} \text { generates the } \mathrm{b}^{\mathrm{m} \mathrm{c}^{\mathrm{p}} \text { part. } * /} \begin{array}{l}
\mathrm{S}_{2} \rightarrow \mathrm{bS} \mathrm{~S}_{2} \mathrm{c} \\
\mathrm{~S}_{2} \rightarrow \varepsilon
\end{array}
\end{array}
$$

We use state 2 to skip over an arbitrary number of ba ${ }^{i}$ groups that aren't involved in the required mismatch.
We use state 3 to count the first group of a's we care about.
We use state 4 to count the second group and make sure it's not equal to the first.
We use state 5 to skip over an arbitrary number of ba ${ }^{i}$ groups in between the two we care about.
We use state 6 to clear the stack in the case that the second group had fewer a's than the first group did. We use state 7 to skip over any remaining ba groups that aren't involved in the required mismatch.
(b) $\quad \mathrm{S} \rightarrow \mathrm{A}^{\prime} \mathrm{bLA} \quad \quad / * \mathrm{~L}$ will take care of two groups where the first group has more a's */
$\mathrm{S} \rightarrow \mathrm{A}^{\prime} \mathrm{bRA}^{\prime} \quad / * \mathrm{R}$ will take care of two groups where the second group has more a's */
$\mathrm{L} \rightarrow \mathrm{ab}|\mathrm{aL}| \mathrm{aLa}$
$\mathrm{R} \rightarrow \mathrm{ba}|\mathrm{Ra}| \mathrm{aRa}$
$\mathrm{A}^{\prime} \rightarrow \mathrm{bAA}^{\prime} \mid \varepsilon$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon$
(c) Let $\mathrm{L}_{1}=b a^{*} \mathrm{ba}^{*}$, which is obviously regular.

If L is regular then
$\mathrm{L}_{2}=\mathrm{L} \cap \mathrm{L}_{1}$ is regular.
$\mathrm{L}_{2}=\mathrm{ba}^{\mathrm{n}} \mathrm{ba}^{\mathrm{m}}, \mathrm{n} \neq \mathrm{m}$
$\neg \mathrm{L}_{2} \cap \mathrm{~L}_{1}$ must also be regular.
But $\neg \mathrm{L}_{2} \cap \mathrm{~L}_{1}=\mathrm{ba}^{\mathrm{n}} \mathrm{ba}^{\mathrm{m}}, \mathrm{n}=\mathrm{m}$, which can easily be shown, using the pumping theorem, not to be regular.

