
Homework 14                              Pushdown Automata and Context-Free Grammars            1 

CS 341 Homework 14 
Pushdown Automata and Context-Free Grammars 

 
1. In class, we described an algorithm for constructing a PDA to accept a language L, given a context free 
grammar for L.  Let L be the balanced brackets language defined by the grammar G = ({S, [, ]}, {[, ]}, R, S), 
where R = 
  S → ε, S → SS, S → [S] 
Apply the construction algorithm to this grammar to derive a PDA that accepts L.  Trace the operation of the 
PDA you have constructed on the input string [[][]]. 
 
2. Consider the following PDA M: 
 
    ε//  a// 
 
                   a//a                  b/a/ 
 
    (a) What is L(M)? 
    (b) Give a deterministic PDA that accepts L(M) (not L(M)$). 
 
3. Write a context-free grammar for L(M), where M is 
 
    ε//  ε//  ε//  ε// 
 
                   a//a                  b/a/      b//b      c/b/      ε/b/ 
 
4. Consider the language L = {bam1bam2b…bamn : n ≥ 2, m1, …, mn ≥ 0, and mi ≠ mj for some i, j} 
    (a) Give a nondeterministic PDA that accepts L. 
    (b) Write a context-free grammar that generates L. 
    (c) Prove that L is not regular. 
 
Solutions  
 
1. This is a very simple mechanical process that you should have no difficulty carrying out, and getting the 
following PDA, M = ({p, q}, {[, ]}, {S, [, ]}, ∆, p, {q}), where 
 ∆ =  {((p, ε, ε), (q, S)), 
    ((q, ε, S), (q, ε)), ((q, ε, S), (q, SS)), ((q, ε, S), (q, [S])), 
    ((q, [, [), (q, ε)), ((q, ], ]), (q, ε))} 
 
2. (a) L(M) = {anbna : n ≥ 0} 
    (b)            a//a 
       
          a//aa 
          b/a/ 
   a// 
 
 
             b// 
         a// 
        
       b/a/ 
 



Homework 14                              Pushdown Automata and Context-Free Grammars            2 

3. Don't even try to use the grammar construction algorithm.  Just observe that L = {anbnbmcp : m ≥ p and n and p 
≥ 0}, or, alternatively {anbmcp : m ≥ n + p and n and p ≥ 0}.  It can be generated by the following rules: 
 S → S1S2 
 S1 → aS1b  /* S1 generates the anbn part.  */ 
 S1 → ε 
 S2 → bS2  /* S2 generates the bmcp part.  */ 
 S2 → bS2c 
 S2 → ε 
 
4. (a)                a,b//          a//a             a/a/    ε/a/ 
 
 
     1 b,ε//  2 b//  3 b//   4 ε/a/           6 
 
             b//       a//                     b// 
 
     5        b//                     7 
 
          a,b//                  a,b// 
 
We use state 2 to skip over an arbitrary number of bai groups that aren't involved in the required mismatch. 
We use state 3 to count the first group of a's we care about. 
We use state 4 to count the second group and make sure it's not equal to the first. 
We use state 5 to skip over an arbitrary number of bai groups in between the two we care about. 
We use state 6 to clear the stack in the case that the second group had fewer a's than the first group did. 
We use state 7 to skip over any remaining bai groups that aren't involved in the required mismatch. 
 
    (b)  S → A'bLA'  /* L will take care of two groups where the first group has more a's  */ 
 S → A'bRA'  /* R will take care of two groups where the second group has more a's  */ 
 L → ab | aL | aLa 
 R →ba | Ra | aRa 
 A' → bAA' | ε 
 A → aA | ε 
 
    (c)  Let L1 = ba*ba*, which is obviously regular. 
 If L is regular then 
 L2 = L ∩ L1 is regular. 
 L2 = banbam, n ≠ m 
 ¬ L2 ∩ L1 must also be regular. 
 But ¬ L2 ∩ L1 = banbam, n = m, which can easily be shown, using the pumping theorem, not to be regular. 
 


