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CS 341 Homework 21 
Undecidability  

  
1. Which of the following problems about Turing machines are solvable, and which are undecidable?  Explain 
your answers carefully. 
(a) To determine, given a Turing machine M, a state q, and a string w, whether M ever reaches state q when 
started with input w from its initial state. 
(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when 
started with input w. 
(c) To determine, given two Turing machines, whether one semidecides the complement of the language 
semidecided by the other. 
(d) To determine, given a Turing machine M, whether the language semidecided by M is finite. 
 
2.  Show that it is decidable, given a pushdown automaton M with one state, whether L(M) = Σ*.  (Hint: Show 
that such an automaton accepts all strings if and only if it accepts all strings of length one.) 
 
3. Which of the following problems about context-free grammars are solvable, and which are undecidable?  
Explain your answers carefully. 
(a) To determine, given a context-free grammar G, is ε ∈  L(G)? 
(b) To determine, given a context-free grammar G, is {ε} = L(G)? 
(c) To determine, given two context-free grammars G1 and G2, is L(G1) ⊆  L(G2)? 
 
4. The nonrecursive languages L that we have discussed in class all have the property that either L or the 
complement of L is recursively enumerable. 
(a) Show by a counting argument that there is a language L such that neither L nor its complement is recursively 
enumerable. 
(b) Give an example of such a language. 
 
Solutions 
 
1. (a) To determine, given a Turing machine M, a state q, and a string w, whether M ever reaches state q when 
started with input w from its initial state.  This is not solvable.  We can reduce H to it.  Essentially, if we can tell 
whether a machine M ever reaches some state q, then let q be M's halt state (and we can massage M so it has only 
one halt state).  If it ever gets to q, it must have halted.  More formally: 
 
    L1 = H =  {s = "M" "w" : M halts on input string w}   
 
                     �       τ 
 
(?M2)  L2 =   {s : "M"  "w" "q" : M reaches state q when started with input w from its initial state}  
 
Let τ' create, from M the machine M* as follows.  Initially M* equals M. Next, a new halting state H is created in 
M*.  Then, from each  state that was a halting state in M, we create transitions in M* such that for all possible 
values of the current tape square, M* goes to H.  We create no other transitions to H.  Notice that M* will end up 
in H in precisely the same situations in which M halts. 
 
Now let τ("M" "w") = τ'("M") "w" "H" 
 
So, if M2 exists, then M1 exists.  It invokes τ' to create M*.  Then it passes "M*", "w", and "H" to M2 and returns 
whatever M2 returns.  But M1 doesn't exist.  So neither does M2. 
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(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when 
started with input w.  This one is solvable.  We will assume that M is deterministic.  We can build the deciding 
machine D as follows.  D starts by simulating the operation of M on w.  D keeps track on another tape of each 
configuration of M that it has seen so far.  Eventually, one of the following things must happen: 
1. M moves its head to the left.  In this case, we say yes. 
2. M is stuck on some square s of the tape.  In other words, it is in some state p looking at some square s on the 

tape and it has been in this configuration before.  If this happens and M didn't go left yet, then M simply 
hasn't moved off of s.  And it won't from now on, since it's just going to do the same thing at this point as it 
did the last time it was in this configuration.  So we say no. 

3. M moves off the right hand edge of the input w.  So it is in some state p looking at a blank.  Within k steps (if 
k is the number of states in M), M must repeat some state p.  If it does this without moving left, then again we 
know that it never will.  In other words, if the last time it was in the configuration in which it was in state p, 
looking at a blank, there was nothing to the right except blanks, and it can't move left, and it is again in that 
same situation, it will do exactly the same thing again.  So we say no. 

 
(c) To determine, given two Turing machines, whether one semidecides the complement of the language 
semidecided by the other.  This one is not solvable.  We can reduce to it the problem, "Given a Turing machine 
M, is there any string at all on which M halts?"  (Which is equivalent to "Is L(M) = ∅ ?") In the book we show 
that this problem is not solvable.  What we'll do is to build a machine M* that semidecides the language Σ*, 
which is the complement of the language ∅ .  If we could build a machine to tell, given two Turing machines, 
whether one semidecides the complement of the language semidecided by the other, then to find out whether any 
given machine M accepts anything, we'd pass M and our constructed M* to this new machine.  If it says yes, then 
M accepts ∅ .  If it says no, then M must accept something.   Formally: 
 
 L1 =  {s = "M" M halts on some string w}   
 
                     �       τ 
 
(?M2)  L2 =  {s = "M1" "M2" : M1 decides the complement of the language semidecided by M2} 
 
M accepts strings over some input alphabet Σ.  Let τ' construct a machine M* that semidecides the language Σ*.  
Then τ("M") = "M" "τ'(M)".  
 
So, if M2 exists, then M1 exists.  It invokes τ' to create M*.  Then it passes "M" and "M*" to M2 and returns the 
opposite of whatever M2 returns (since M2 says yes if L(M) = ∅  and M1 wants to say yes if L(M) ≠ ∅ ).  But M1 
doesn't exist.  So neither does M2. 
 
(d) To determine, given a Turing machine M, whether the language semidecided by M is finite.  This one isn't 
solvable.  We can reduce to it the problem, "Given a Turing machine M, does M halt on ε?"  We'll construct, 
from M, a new machine M*, which erases its input tape and then simulates M.  M* halts on all inputs iff M halts 
on ε.  If M doesn't halt on ε, then M* halts on no inputs.  So there are two situations:  M* halts on all inputs (i.e., 
L(M*) is infinite) or M* halts on no inputs (i.e., L(M*) is finite).  So, if we could build a Turing machine M2 to 
decide whether L(M*) is finite or infinite, we could build a machine M1 to decide whether M halts on ε.  
Formally: 
 
 L1 =  {s = "M" M halts on ε}   
 
                     �       τ 
 
(?M2)  L2 =  {s = "M" is finite} 
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Let τ construct the machine M* from "M" as described above.   
 
So, if M2 exists, then M1 exists.  It invokes τ to create M* which accepts a finite language precisely if M accepts 
ε.   But M1 doesn't exist.  So neither does M2. 
 
2. M only has one state S.  If S is not a final state, then L(M) = ∅ , which is clearly not equal to Σ*, so we say no.  
Now suppose that S is a final state.  Then M accepts ε.  Does it also accept anything else?  To accept any single 
character c in Σ, there must be a transition ((S, c, ε), (S, ε)).  In other words, we must be able to end up in S with 
an empty stack if, looking at an empty stack, we see c.  If there is not such a transition for every element c of Σ, 
then we say no, since we clearly cannot get even all the one character strings in Σ*.  Now, suppose that all those 
required transitions do exist.  Then, we can stay in S with an empty stack (and thus accept) no matter what 
character we see next and no matter what is on the stack (since these transitions don't check the stack).  So, if M 
accepts all strings in Σ* of length one, then it accepts all strings in Σ*.  Note that if M is deterministic, then if it 
does have all the required transitions it will have no others, since all possible configurations are accounted for 
 
3. (a) To determine, given a context-free grammar G, is ε ∈  L(G)  This is solvable by using either top down or 
bottom up parsing on the string ε. 
    (b) To determine, given a context-free grammar G, is {ε} = L(G)  This is solvable.  By the context-free 
pumping theorem, we know that, given a context-free grammar G generating a language L(G), if there is a string 
of length greater than BT in L, then vy can be pumped out to create a shorter string also in L (the string must be 
shorter since |vy| >0).  We can, of course, repeat this process until we reduce the original string to one of length 
less than BT.  This means that if there any strings in L, there are some strings of length less than BT.  So, to see 
whether L = {ε}, we do the following:  First see whether ε ∈  L(G) by parsing.  If not, we say no.  If ε is in L, then 
we need to determine whether any other strings are also in L.  To do this, we test all strings in Σ* of length up to 
BT+1.  If we find one, we say no, L ≠ {ε}.  If we don't find any, we can assert that L = {ε}.  Why?  If there is a 
longer string in L and we haven't found it yet, then we know, by the pumping theorem, that we could pump out vy 
until we got a string of length BT or less.  If ε were not in L, we could just test up to length BT  and if we didn't 
find any elements of L at all, we could stop, since if there were bigger ones we could pump out and get shorter 
ones but there aren't any.  However, because ε is in L, what about the case where we pump out and get ε?  That's 
why we go up to BT+1.  If there are any long strings that pump out to ε, then there is a shortest such string, which 
can't be longer than BT+1 since that's the longest string we can pump out (by the strong version of the pumping 
theorem). 
 
    (c) To determine, given two context-free grammars G1 and G2, is L(G1) ⊆  L(G2)  This isn't solvable.  If it were, 
then we could reduce the unsolvable problem of determining whether L(G1) = L(G2) to it.  Notice that L(G1) = 
L(G2) iff L(G1) ⊆  L(G2) and L(G2) ⊆  L(G1).  So, if we could solve the subset problem, then to find out whether 
L(G1) = L(G2), all we do is ask whether the first language is a subset of the second and vice versa.  If both 
answers are yes, we say yes.  Otherwise, we say no.  Formally: 
    L1 =  {s : s = G1 G2, G1 and G2 are context-free grammars, and L(G1) = L(G2)  }   
 
                     �       τ 
 
(?M2)  L2 = {s : s = G1 G2, G1 and G2 are context-free grammars, and L(G1) ⊆  L(G2)  }  
 
If M2 exists, then M1(G1 G2) = M2(G1 G2) AND M2(G2 G1).  To write this out in our usual notation so that the last 
function that gets applied is M2, is sort of tricky, but it can, of course be done:  Don't worry about doing it.  If you 
can write any function for M1 that is guaranteed to be recursive if M2 exists, then you've done the proof. 
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4. (a) If any language L is recursively enumerable, then there is a Turing machine that semidecides it.  Every 
Turing machine has a description of finite length.  Therefore, the number of Turing machines, and thus the 
number of recursively enumerable languages, is countably infinite (since the power set of a countable set is 
countably infinite).  If, for some language L, its complement is re, then it must have a semideciding Turing 
machine, so there is a countably infinite number of languages whose complement is recursively enumerable.  But 
there is an uncountable number of languages.  So there must be languages that are not recursively enumerable 
and do not have recursively enumerable complements. 
 
(b) L = {"M" : M halts on the input 0 and M doesn't halt on the input 1}. 
The complement of L = {"M" : M doesn't halt on the input 0 or M halts on the input 1}.  Neither of these 
languages is recursively enumerable because of the doesn't halt piece. 
 
 


