CS 341 Homework 21
Undecidability

1. Which of the following problems about Turing machines are solvable, and which are undecidable? Explain
your answers carefully.

(a) To determine, given a Turing machine M, a state g, and a string w, whether M ever reaches state g when
started with input w from itsinitia state.

(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when
started with input w.

(c) To determine, given two Turing machines, whether one semidecides the complement of the language
semidecided by the other.

(d) To determine, given a Turing machine M, whether the language semidecided by M isfinite.

2. Show that it is decidable, given a pushdown automaton M with one state, whether L(M) = 2*. (Hint: Show
that such an automaton accepts all strings if and only if it accepts all strings of length one.)

3. Which of the following problems about context-free grammars are solvable, and which are undecidable?
Explain your answers carefully.

(a) To determine, given a context-free grammar G, is€ [L(G)?

(b) To determine, given a context-free grammar G, is{e} = L(G)?

(c) To determine, given two context-free grammars G, and G, isL(G,) 0 L(Gy)?

4. The nonrecursive languages L that we have discussed in class all have the property that either L or the
complement of L isrecursively enumerable.

(a) Show by a counting argument that there is alanguage L such that neither L nor its complement is recursively
enumerable.

(b) Give an example of such alanguage.

Solutions
1. (a) To determine, given a Turing machine M, a state g, and a string w, whether M ever reaches state g when
started with input w from itsinitial state. Thisisnot solvable. We can reduce H to it. Essentialy, if we can tell
whether amachine M ever reaches some state g, then let g be M's halt state (and we can massage M so it has only
one halt state). If it ever getsto q, it must have halted. More formally:

L,=H= {s="M""w" : M halts on input string w}

U 1

(M, L,= {s:"M" "w" "q" : M reaches state g when started with input w from itsinitial state}
Let T’ create, from M the machine M* asfollows. Initially M* equals M. Next, anew halting state H is created in
M*. Then, from each state that was a halting statein M, we create transitionsin M* such that for all possible
values of the current tape square, M* goesto H. We create no other transitionsto H. Notice that M* will end up
in H in precisely the same situations in which M halts.

NOW Iet T("M" "W") = '['("M") "Wll "HII

So, if M, exists, then M, exists. It invokes T' to create M*. Then it passes"M*", "w", and "H" to M, and returns
whatever M, returns. But M4 doesn't exist. So neither does M.

Homework 21 Undecidability 1

(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when
started with input w. Thisoneis solvable. We will assume that M is deterministic. We can build the deciding
machine D asfollows. D starts by simulating the operation of M onw. D keeps track on another tape of each
configuration of M that it has seen so far. Eventually, one of the following things must happen:

1. M movesitshead to theleft. Inthis case, we say yes.

2. M isstuck on some square s of the tape. In other words, it isin some state p looking at some square s on the
tape and it has been in this configuration before. If this happensand M didn't go left yet, then M simply
hasn't moved off of s. And it won't from now on, since it's just going to do the same thing at this point asit
did the last time it was in this configuration. So we say no.

3. M moves off the right hand edge of the input w. So it isin some state p looking at a blank. Within k steps (if
k isthe number of statesin M), M must repeat some state p. If it does this without moving left, then again we
know that it never will. In other words, if the last time it was in the configuration in which it was in state p,
looking at a blank, there was nothing to the right except blanks, and it can't move left, and it isagain in that
same situation, it will do exactly the same thing again. So we say no.

(c) To determine, given two Turing machines, whether one semidecides the complement of the language
semidecided by the other. Thisoneis not solvable. We can reduce to it the problem, "Given a Turing machine
M, isthere any string at all on which M halts?' (Whichisequivaent to"IsL(M) = 0?7") In the book we show
that this problem is not solvable. What well do isto build a machine M* that semidecides the language >*,
which is the complement of the language [J. If we could build a machine to tell, given two Turing machines,
whether one semidecides the complement of the language semidecided by the other, then to find out whether any
given machine M accepts anything, we'd pass M and our constructed M* to this new machine. If it saysyes, then
M accepts . If it says no, then M must accept something. Formally:

L;= {s="M"M haltson some string w}
U 1
(My) L= {s="M;""M,;": M, decides the complement of the language semidecided by M}

M accepts strings over someinput alphabet 2. Let T construct a machine M* that semidecides the language >*.
Thent("M") ="M" "T'(M)".

So, if M, exists, then M, exists. It invokesT' to create M*. Then it passes"M" and "M*" to M, and returns the
opposite of whatever M, returns (since M2 saysyesif L(M) = [and M1 wantsto say yesif L(M) # [J). But M,
doesn't exist. So neither does M.

(d) To determine, given a Turing machine M, whether the language semidecided by M isfinite. Thisoneisn't
solvable. We can reduce to it the problem, "Given a Turing machine M, does M halt on €?7' We'll construct,
from M, a new machine M*, which erases itsinput tape and then simulates M. M* haltson al inputsiff M halts
one. If M doesn't halt on g, then M* halts on no inputs. So there are two situations: M* haltson all inputs (i.e.,
L(M*) isinfinite) or M* haltson no inputs (i.e., L(M*) isfinite). So, if we could build a Turing machine M, to
decide whether L(M*) isfinite or infinite, we could build a machine M, to decide whether M haltson .
Formally:

L= {s="M"M hdtson g}
U 1

(M) L= {s="M"isfinite}

Homework 21 Undecidability 2

Let T construct the machine M* from "M" as described above.

So, if M; exists, then M, exists. It invokest to create M* which accepts a finite language precisely if M accepts
€. But M; doesn't exist. So neither does M.

2. M only hasone state S. If Sisnot afinal state, then L(M) = [0, which is clearly not equal to *, so we say no.
Now suppose that Sisafinal state. Then M acceptse. Doesit aso accept anything else? To accept any single
character cin Z, there must be atransition ((S, c, €), (S, €)). In other words, we must be ableto end up in Swith
an empty stack if, looking at an empty stack, we see c. If thereisnot such atransition for every element c of Z,
then we say no, since we clearly cannot get even al the one character stringsin >*. Now, suppose that all those
required transitions do exist. Then, we can stay in S with an empty stack (and thus accept) no matter what
character we see next and no matter what is on the stack (since these transitions don't check the stack). So, if M
accepts all stringsin Z* of length one, then it accepts all stringsin *. Notethat if M is deterministic, then if it
does have all the required transitions it will have no others, since al possible configurations are accounted for

3. () To determine, given a context-free grammar G, is€ [1 L(G) Thisis solvable by using either top down or
bottom up parsing on the string €.

(b) To determine, given a context-free grammar G, is{€} =L(G) Thisissolvable. By the context-free
pumping theorem, we know that, given a context-free grammar G generating alanguage L(G), if thereisastring
of length greater than BT in L, then vy can be pumped out to create a shorter string also in L (the string must be
shorter since vy| >0). We can, of course, repeat this process until we reduce the original string to one of length
lessthan B'. Thismeansthat if there any stringsin L, there are some strings of length lessthan B™. So, to see
whether L ={¢}, we do the following: First see whether € 0 L(G) by parsing. If not, wesay no. If eisinL, then
we need to determine whether any other stringsarealsoinL. To do this, wetest al stringsin >* of length up to
B™. If wefind one, wesay no, L # {¢}. If wedon' find any, we can assert that L = {€}. Why? If thereisa
longer string in L and we haven't found it yet, then we know, by the pumping theorem, that we could pump out vy
until we got a string of length B” or less. If € werenot in L, we could just test up to length B™ and if we didn't
find any elements of L at all, we could stop, sinceif there were bigger ones we could pump out and get shorter
ones but there aren't any. However, because € isin L, what about the case where we pump out and get €? That's
why we go up to B™. If there are any long strings that pump out to €, then there is a shortest such string, which
can't be longer than B™ since that's the longest string we can pump out (by the strong version of the pumping
theorem).

(c) To determine, given two context-free grammars G, and G,, isL(G,) [0 L(G;) Thisisn't solvable. If it were,
then we could reduce the unsolvable problem of determining whether L(G,) = L(G,) toit. Noticethat L(G;) =
L(Gy) iff L(Gy) U L(G,) and L(G,) O L(Gy). So, if we could solve the subset problem, then to find out whether
L(Gy) = L(Gy), dl wedo is ask whether the first language is a subset of the second and vice versa. If both
answers are yes, we say yes. Otherwise, we say no. Formally:

Li= {s:s=G; G, G; and G, are context-free grammars, and L(G;) = L(Gy) }

U 1
(My) Lo={s:s=G; G, G;and G, are context-free grammars, and L(G,) I L(G,) }
If M, exists, then M (G, Gy) = Myx(G; Gy) AND My(G;, G;). To write thisout in our usual notation so that the last

function that gets applied is M, is sort of tricky, but it can, of course be done: Don't worry about doing it. If you
can write any function for M, that is guaranteed to be recursive if M, exists, then you've done the proof.

Homework 21 Undecidability 3

4. (a) If any language L isrecursively enumerable, then there is a Turing machine that semidecidesit. Every
Turing machine has a description of finite length. Therefore, the number of Turing machines, and thus the
number of recursively enumerable languages, is countably infinite (since the power set of a countable set is
countably infinite). If, for some language L, its complement isre, then it must have a semideciding Turing
machine, so there is a countably infinite number of languages whose complement is recursively enumerable. But
there is an uncountable number of languages. So there must be languages that are not recursively enumerable
and do not have recursively enumerable complements.

(b) L ={"M" : M haltson the input 0 and M doesn't halt on the input 1}.

The complement of L ={"M" : M doesn't halt on the input O or M halts on the input 1}. Neither of these
languages is recursively enumerable because of the doesn't halt piece.

Homework 21 Undecidability 4

