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The Three Hour Tour Through Automata Theory 

Analyzing Problems as Opposed to Algorithms 

In CS336 you learned to analyze algorithms.  This semester, we're going to analyze problems. 
 
We're going to see that there is a hierarchy of problems:  easy, hard, impossible. 
 
For each of the first two, we'll see that for any problem, there are infinitely many programs to 
solve the problem.   
 

By the way, this is trivial.  Take one program and add any number of junk steps.  We'll 
formalize this later once we have some formalisms to work with. 

 
Some may be better than others.  But in some cases, we can show some sort of boundary on how 
good an algorithm we can attempt to find for a particular problem. 

Let's Look at Some Problems 

Let's look at a collection of problems, all which could arise in considering one piece of C++ 
code.  [slide - Let's Look at Some Problems] 
 
As we move from problem 1 to problem 5, things get harder in two key ways.  The first is that it 
seems we'll need more complicated, harder to write and design programs.  In other words, it's 
going to take more time to write the programs.  The second is that the programs are going to take 
a lot longer to run.  As we get to problems 4 and 5, it's not even clear there is a program that will 
do the job.  In fact, in general for problem 4 there isn't.  For problem 5, in general we can't even 
get a formal statement of the problem, much less an algorithmic solution. 

Languages 

Characterizing Problems as Language Recognition Tasks 
In order to create a formal theory of problems (as opposed to algorithms), we need a single, 
relatively straightforward framework that we can use to describe any kind of possibly computable 
function.  The one we'll use is language recognition. 

What is a Language? 
A language is a set of strings over an alphabet, which can be any finite collection of symbols. 
[Slide - Languages] 

Defining a Problem as a Language Recognition Task 
We can define any problem as a language recognition task.  In other words, we can output just a 
boolean, True or False.  Some problems seem naturally to be described as recognition tasks.  For 
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example, accept grammatical English sentences and reject bad ones. (Although the truth is that 
English is so squishy it's nearly impossible to formalize this.  So let's pick another example -- 
accept the syntactically valid C programs and reject the others.) 
 
Problems that you think of more naturally as functions can also be described this way.  We define 
the set of input strings to consist of strings that are formed by concatenating an input to an 
output.  Then we only accept strings that have the correct output concatenated to each input.  
[Slide - Encoding Output] 

Branching Out -- Allowing for Actual Output 
Although it is simpler to characterize problems simply as recognition problems and it is possible 
to reformulate functional problems as recognition problems, we will see that we can augment the 
formalisms we'll develop to allow for output as well. 

Defining Languages Using Grammars 
Now what we need is a general mechanism for defining languages.  Of course, if we have a finite 
language, we can just enumerate all the strings in it.  But most interesting languages are infinite.  
What we need is a finite mechanism for specifying infinite languages.  Grammars can do this. 
 
The standard way to write a grammar is as a production system, composed of rules with a left 
hand side and a right hand side.  Each side contains a sequence of symbols.  Some of these 
symbols are terminal symbols, i.e., symbols in the language we're defining.  Others are drawn 
from a finite set of nonterminal symbols, which are internal symbols that we use just to help us 
define the language.  Of these nonterminal symbols, one is special -- we'll call it the start symbol. 
[Slide - Grammars 1] 
 
If there is a grammar that defines a language, then there is an infinite number of such grammars.  
Some may be better, from various points of view than others.  Consider the grammar for odd 
integers.  What different grammars could we write? One thing we could do would be to introduce 
the idea of odd and even digits. [Slide - Grammars 2] 
 
Sometimes we use single characters, disjoint from the characters of the target language, in our 
rules. But sometimes we need more symbols.  Then we often use < and > to mark multiple 
character nonterminal symbols. [Slide - Grammars 3] 
 
Notice that we've also introduced a notation for OR so that we don't have to write as many 
separate rules.  By the way, there are lots of ways of writing a grammar of arithmetic expressions.  
This one is simple but it's not very good.  It doesn't help us at all to determine the precedence of 
operators.  Later we'll see other grammars that do that. 

Grammars as Generators and as Acceptors 
So far, we've defined problems as language recognition tasks.  But when you look at the 
grammars we've considered, you see that there's a sense in which they seem more naturally to be 
generators than recognizers.  If you start with S, you can generate all the strings in the language 
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defined by the grammar.  We'll see later that we'll use the idea of a grammar as a generator (or an 
enumerator) as one way to define some interesting classes of languages. 
 
But you can also use grammars as acceptors, as we've suggested.  There are two ways to do that.  
One is top-down.  By that we mean that you start with S, and apply rules.  [work this out for a 
simple expression for the Language of Simple Arithmetic Expressions]  At some point, you'll 
generate a string without any nonterminals (i.e., a string in the language).  Check and see if it's 
the one you want.  If so accept.  If not, try again.  If you do this systematically, then if the string is 
in the language, you'll eventually generate it.  If it isn't, you may or may not know when you 
should give up.  More on that later. 
 
The other approach is bottom up.  In this approach, we simply apply the rules sort of backwards, 
i.e., we run them from right to left, matching the string to the right hand sides of the rules and 
continuing until we generate S and nothing else. [work this out for a simple expression for the 
Language of Simple Arithmetic Expressions]  Again, there are lots of possibilities to consider 
and there's no guarantee that you'll know when to stop if the string isn't in the language.  
Actually, for this simple grammar there is, but we can't assure that for all kinds of grammars. 

The Language Hierarchy  
Remember that our whole goal in this exercise is to describe classes of problems, characterize 
them as easy or hard, and define computational mechanisms for solving them.  Since we've 
decided to characterize problems as languages to be recognized, what we need to do is to create a 
language hierarchy, in which we start with very simple languages and move toward more 
complex ones. 

Regular Languages 
Regular languages are very simple languages that can be defined by a very restricted kind of 
grammar.  In these grammars, the left side of every rule is a single nonterminal and the right side 
is a single terminal optionally followed by a single nonterminal.  [slide - Regular Grammars] If 
you look at what's going on with these simple grammars, you can see that as you apply rules, 
starting with S, you generate a terminal symbol and (optionally) have a new nonterminal to work 
with.  But you can never end up with multiple nonterminals at once. (Recall our first grammar for 
Odd Integers [slide - Grammars 1]). 
 
Of course, we also had another grammar for that same language that didn't satisfy this restriction.  
But that's okay.  If it is possible to define the language using the restricted formalism, then it falls 
into the restricted class.  The fact that there are other, less restricted ways to define it doesn't 
matter. 
 
It turns out that there is an equivalent, often useful, way to describe this same class of languages, 
using regular expressions. [Slide Regular Expressions and Languages]  Regular expressions 
don't look like grammars, in the sense that there are no production rules, but they can be used to 
define exactly the same set of languages that the restricted class of regular grammars can define.  
Here's a regular expression for the language that consists of odd integers, and one for the 
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language of identifiers.  We can try to write a regular expression for the language of matched 
parenthesis, but we won't succeed.   
 
Intuitively, regular languages are ones that can be defined without keeping track of more than a 
finite number of things at once.  So, looking back at some of our example languages [slide 
Languages], the first is regular and none of the others is. 

Context Free Languages 
To get more power in how we define languages, we need to return to the more general production 
rule structure. 
 
Suppose we allow rules where the left hand side is composed of a single symbol and the right 
hand side can be anything.  We then have the class of context-free grammars.  We define the 
class of context-free languages to include any language that can be generated by a context-free 
grammar. 
 
The context-free grammar formalism allows us to define many useful languages, including the 
languages of matched parentheses and of equal numbers of parentheses but in any order [slide -
Context-Free Grammars].  We can also describe the language of simple arithmetic expressions 
[slide - Grammars 3].   
 
Although this system is a lot more powerful (and useful) than regular languages are, it is not 
adequate for everything.  We'll see some quite simple artificial language it won't work for in a 
minute.  But it's also inadequate for things like ordinary English.  [slide - English Isn't Context-
Free]. 

Recursively Enumerable Languages 
Now suppose we remove all restrictions from the form of our grammars.  Any combination of 
symbols can appear on the left hand side and any combination of symbols can appear on the 
right.  The only real restriction is that there can be only a finite number of rules.  For example, we 
can write a grammar for the language that contains strings of the form a b cn n n .  [slide - 
Unrestricted Grammars]     
 
Once we remove all restrictions, we clearly have the largest set of languages that can be 
generated by any finite grammar.  We'll call the languages that can be generated in this way the 
class of recursively enumerable languages.  This means that, for any recursively enumerable 
language, it is possible, using the associated grammar, to generate all the strings in the language.  
Of course, it may take an infinite amount of time if the language contains an infinite number of 
strings.  But any given string, if it is enumerated at all, will be enumerated in a finite amount of 
time.  So I guess we could sit and wait.  Unfortunately, of course, we don't know how long to 
wait, which is a problem if we're trying to decide whether a string is in the language by 
generating all the strings and seeing if the one we care about shows up.  
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Recursive Languages 
There is one remaining set of languages that it is useful to consider.  What about the recursively 
enumerable languages where we could guarantee that, after a finite amount of time, either a given 
string would be generated or we would know that it isn't going to be.  For example, if we could 
generate all the strings of length 1, then all the strings of length 2, and so forth, we'd either 
generate the string we want or we'd just wait until we'd gone past the length we cared about and 
then report failure.  From a practical point of view, this class is very useful since we like to deal 
with solutions to problems that are guaranteed to halt.  We'll call this class of languages the 
recursive languages.  This means that we can not only generate the strings in the language, we 
can actually, via some algorithm, decide whether a string is in the language and halt, with an 
answer, either way.   
 
Clearly the class of recursive languages is a subset of the class of recursively enumerable ones.  
But, unfortunately, this time we're not going to be able to define our new class by placing 
syntactic restrictions on the form of the grammars we use.  There are some useful languages, 
such, as a b cn n n , that are recursive.  There are some others, unfortunately, that are not. 

The Whole Picture 
 
[Slide - The Language Hierarchy] 

Computational Devices 

Formal Models of Computational Devices 
 
If we want to make formal statements about the kinds of computing power required to solve 
various kinds of problems, then we need simple, precise models of computation. 
 
We're looking for models that make it easy to talk about what can be computed -- we're not 
worrying about efficiency at this point. 
 
When we described languages and grammars, we saw that we could introduce several different 
structures, each with different computational power.  We can do the same thing with machines.  
Let's start with really simple devices and see what they can do.  When we find limitations, we can 
expand their power. 

Finite State Machines 
The only memory consists of the ability to be in one of a finite number of states.  The machine 
operates by reading an input symbol and moving to a new state that is determined solely by the 
state it is in and the input that it reads.  There is a unique start state and one or more final states.  
If the input is exhausted and the machine is in a final state, then it accepts the input.  Otherwise it 
rejects it. 
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Example: An FSM to accept odd integers. [Slide - Finite State Machines 1] 
 
Example: An FSM to accept valid identifiers. [Slide - Finite State Machines 2] 
 
Example: How about an FSM to accept strings with balanced parentheses? 
 
Notice one nice feature of every finite state machine -- it will always halt and it will always 
provide an answer, one way or another.  As we'll see later, not all computational systems offer 
these guarantees. 
 
But we've got this at a price.  There is only a finite amount of memory.  So, for example, we can't 
count anything.  We need a stronger device. 

Push Down Automata 

Deterministic PDAs 
Add a single stack to an FSM.  Now the action of the machine is a function of its state, the input 
it reads, and the values at the top of the stack. 
 
Example:  A PDA to accept strings with balanced parentheses. [Slide - Push Down Automata]  
Notice that this really simple machine only has one state.  It's not using the states to remember 
anything.  All its memory is in the stack. 
 
Example: A PDA to accept strings of the form w#wR, where w ∈  {a,b}* [slide - Pushdown 
Automaton 2]. 
 
Example: How about a PDA to accept strings with some number of a's, followed by the same 
number of b's, followed by the same number of c's?  [slide - PDA 3]  It turns out that this isn't 
possible.  The problem is that we could count the a's on the stack, then pop for b's.  But how 
could we tell if there is the right number of c's.  We'll see in a bit that we shouldn't be too 
surprised about this result.  We can create PDA's to accept precisely those languages that we can 
generate with CFGs.  And remember that we had to use an unrestricted grammar to generate this 
language. 

Nondeterministic PDAs 
Example: How about a PDA to accept strings of the form w wR?  We can do this one if we 
expand our notion of a PDA to allow it to be nondeterministic.  The problem is that we don't 
know when to imagine that the reversal starts.  What we need to do is to guess.  In particular, we 
need to try it at every point.  We can do this by adding an epsilon transition from the start state 
(in which we're pushing w) to the final state in which we're popping as we read wR.[slide - A 
Nondeterministic PDA]  Adding this kind of nondeterminism actually adds power to the PDA 
notion.  And actually, it is the class of nondeterministic PDA's that is equivalent to the class of 
context-free languages.  No surprise, since we were able to write a context free grammar for this 
language 
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By the way, it also makes sense to talk about nondeterministic finite state machines.  But it turns 
out that adding nondeterminism to finite state machines doesn't increase the class of things they 
can compute.  It just makes it easier to describe some machines.  Intuitively, the reason that 
nondeterminism doesn't buy you anything with finite state machines is that we can simulate a 
nondeterministic machine with a deterministic machine.  We just make states that represent sets 
of states in the nondeterministic machine.  So in essence, we follow all paths.  If one of them 
accepts, we accept. 
 
Then why can't we do that with PDA's?  For finite state machines, there must be a finite number 
of states.  DAH.  So there is a finite number of subsets of states and we can just make them the 
states of our new machine.  Clunky but finite.  Once we add the stack, however, there is no 
longer a finite number of states of the total machine.  So there is not a finite number of subsets of 
states.  So we can't simulate being in several states at once just using states.  And we only have 
one stack.  Which branch would get it?  That's why adding nondeterminism actually adds power 
for PDAs. 

Turing Machines 
Clearly there are still some things we cannot do with PDAs.  All we have is a single stack.  We 
can count one thing.  If we need to count more than one thing (such as a's and b's in the case of 
languages defined by a b cn n n ), we're in trouble. 
 
So we need to define a more powerful computing device.  The formalism we'll use is called the 
Turing Machine, after its inventor, Alan Turing.  There are many different (and equivalent) ways 
to write descriptions of Turing Machines, but the basic idea is the same for all of them [slide - 
Turing Machines].  In this new formalism, we allow our machines to write onto the input tape.  
They can write on top of the input.  They can also write past the input.  This makes it easier to 
define computation that actually outputs something besides yes or no if we want to. But, most 
importantly, because we view the tape as being of infinite length, all limitations of finiteness or 
limited storage have been removed, even though we continue to retain the core idea of a finite 
number of states in the controller itself. 
 
Notice, though, that Turing Machines are not guaranteed to halt.  Our example one always does.  
But we could certainly build one that scans right until it finds a blank (writing nothing) and then 
scans left until it finds the start symbol and then scans right again and so forth. That's a legal (if 
stupid) Turing Machine.  Unfortunately, (see below) it's not always possible to tell, given a 
Turning Machine, whether it is guaranteed to halt.  This is the biggest difference between Turing 
Machines and the FSMs and PDAs, both of which will always halt. 

Extensions to Turing Machines 
You may be thinking, wow, this Turing Machine idea sure is restrictive.  For example, suppose 
we want to accept all strings in the simple language {w # w R }.  We saw that this was easy to do 
in one pass with a pushdown automaton.  But to do this with the sort of Turing Machine we've 
got so far would be really clunky.  [work this out on a slide] We'd have to start at the left of the 
string, mark a character, move all the way to the right to find the corresponding character, mark 
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it, scan back left, do it again, and so forth.  We've just transformed a linear process into an n2  
one. 
 
But suppose we had a Turing Machine with 2 tapes.  The first thing we'll do is to copy the input 
onto the second tape.  Now start the read head of the first tape at the left end of the input and the 
read head of the second tape at the right end.  At each step in the operation of the machine, we 
check to make sure that the characters being read on the two tapes are the same.  And we move 
the head on tape 1 right and the head on tape 2 to the left.  We run out of input on both machines 
at the same time, we accept.  [slide -A Two Head Turing Machine] 
 
The big question now is, "Have we created a new notational device, one that makes it easier to 
describe how a machine will operate, or have we actually created a new kind of device with more 
power than the old one?  The answer is the former.  We can prove that by showing that we can 
simulate a Turing Machine with any finite number of tapes by a machine that computes the same 
thing but only has one tape.  [slide - Simulating k Heads with One]  The key idea here is to use 
the one tape but to think of it has having some larger number of tracks.  Since there is a finite 
tape alphabet, we know that we can encode any finite number of symbols in a finite (but larger) 
symbol alphabet.  For example, to simulate our two headed machine with a tape alphabet of 3 
symbols plus start and blank, we will need 2*2*5*5 or 100 tape symbols.  So to do this 
simulation, we must do two main things: Encode all the information from the old, multi-tape 
machine on the new, single tape machine and redesign the finite state controller so that it 
simulates, in several moves, each move of the old machine. 
 
It turns out that any "reasonable" addition you can think of to our idea of a Turing Machine is 
implementable with the simple machine we already have.  For example, any nondeterministic 
Turing Machine can be simulated by a deterministic one.  This is really significant.  In this, in 
some ways trivial, machine, we have captured the idea of computability. 
 
Okay, so our Turing Machines can do everything any other machine can do.  It also goes the 
other way.  We can propose alternative structures that can do everything our Turing Machines 
can do.  For example, we can simulate any Turing Machine with a deterministic PDA that has 
two stacks  rather than one.  What this machine will do is read its input tape once, copying onto 
the first stack all the nonblank symbols.  Then it will pop all those symbols off, one at a time, and 
move them to the second stack.  Now it can move along its simulated tape by transfering symbols 
from one stack to the other.   [slide - Simulating a Turing Machine with Two Stacks]    

The Universal Turing Machine 
So now, having shown that we can simulate anything on a simple Turing Machine, it should 
come as no surprise that we can design a Turing Machine that takes as its input the definition of 
another Turing Machine, along with an input for that machine.  What our machine does is to 
simulate the behavior of the machine it is given, on the given input. 
 
Remember that to simulate a k-tape machine by a 1 tape machine we had first to state how to 
encode the multiple tapes.  Then we had to state how the machine would operate on the 
encoding.  We have to do the same thing here.  First we need to decide how to encode the states 
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and the tape symbols of the input machine, which we'll call M.  There's no upper bound on how 
many states or tape symbols there will be.  So we can't encode them with single symbols.  Instead 
we'll encode states as strings  that start with a "q" and then have a binary encoding of the state 
number (with enough leading zeros so all such encodings take the same number of digits).  We'll 
encode tape symbols as an "a" followed by a binary encoding of the count of the symbol.  And 
we'll encode "move left" as 10, "move right" as 01, and stay put as 00.  We'll use # as a delimiter 
between transitions.  [slide - Encoding States, Symbols, and Transitions] 
 
Next, we need a way to encode the simulation of the operation of M.  We'll use a three tape 
machine as our Universal Turing Machine.  (Remember, we can always implement it on a one 
tape machine, but this is a lot easier to describe.)  We'll use one tape to encode the tape of M, the 
second tape contains the encoding of M, and the third tape encodes the current state of M during 
the simulation.  [slide - The Universal Turing Machine] 

A Hierarchy of Computational Devices 
These various machines that we have just defined, fall into an inclusion hierarchy, in the sense 
that the simpler machines can always be simulate by the more powerful ones.  [Slide - A 
Machine Hierarchy] 

The Equivalence of the Language Hierarchy and the Computational 
Hierarchy 

Okay, this probably comes as no surprise.  The machine hierarchy we've just examined exactly 
mirrors the language hierarchy.  [Slide - Languages and Machines] 
 
Actually, this is an amazing result.  It seems to suggest that there's something quite natural about 
these categories. 

Church's Thesis 

If we really want to talk about naturalness, can we say anything about whether we've captured 
what it means to be computable?  Church's Thesis (also sometimes called the Church-Turing 
Thesis) asserts that the precise concept of the Turing Machine that halts on all inputs corresponds 
to the intuitive notion of an algorithm.  Think about it.  Clearly a Turing Machine that halts 
defines an algorithm.  But what about the other way around?  Could there be something that is 
computable by some kind of algorithm that is not computable by a Turing Machine that halts?  
From what we've seen so far, it may seem unlikely, since every extension we can propose to the 
Turing Machine model turns out possibly to make things more convenient, but it never extends 
the formal power.  It turns out that people have proposed various other formalisms over the last 
50 years or so, and they also turn out to be no more powerful than the Turing Machine.  Of 
course, something could turn up, but it seems unlikely. 
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Techniques for Showing that a Problem (or Language) Is Not in a 
Particular Circle in the Hierarchy 

Counting 
a bn n  is not regular. 

Closure Properties 
L = { a b cn m p : m n≠  or m p≠ } is not deterministic context-free.  [slide - Using Closure 
Properties]  Notice that L' contains all strings that violate at least one of the requirements for L.  
So they may be strings that aren't composed of a string of a's, followed by a string of b's, 
followed by a string of c's.  Or they may have that property but they violate the rule that m, n, and 
p cannot all be the same.  In other words, they are all the same.  So if we intersect L' with the 
regular expression a*b*c*, we throw away everything that isn't a string of a's then b's then c's, 
and we're left with strings of n a's, followed, by n b's, followed by n c's.  

Diagonalization 
Remember the proof that the power set of the integers isn't countable.  If it were, there would be 
a way of enumerating the sets, thus setting them in one to one correspondence with the integers.  
But suppose there is such a way [slide - Diagonalization].  Then we could represent it in a table 
where element (i, j) is 1 precisely in case the number j is present in the set i.  But now construct a 
new set, represented as a new row of the table.  In this new row, element i will be 1 if element 
(i,i) of the original table was 0, and vice versa.  This row represents a new set that couldn't have 
been in the previous enumeration.  Thus we get a contradiction and the power set of the integers 
must not be countable. 
 
We can use this technique for perhaps the most important result in the theory of computing. 

The Unsolvability of the Halting Problem 

There are recursively enumerable languages that are not recursive.  In other words, there are sets 
that can be enumerated, but there is no decision procedure for them.  Any program that attempts 
to decide whether a string is in the language may not halt.   
 
One of the most interesting such sets is the following.  Consider sets of ordered pairs where the 
first element is a description of a Turing Machine.  The second element is an input to the 
machine.  We want to include only those ordered pairs where the machine halts on the input.  
This set is not recursively enumerable.  In other words, there's no way to write an algorithm that, 
given a machine and an input, determines whether or not the machine halts on the input.  [slide - 
The Unsolvability of the Halting Problem]   
 
Suppose there were such a machine.  Let's call it HALTS.  HALTS(M,x) returns true if Turing 
machine M halts on input x.  Otherwise it returns false.  Now we write a Turing Machine 
program that implements the TROUBLE algorithm.  Now what happens if we invoke 
HALTS(TROUBLE,TROUBLE)?  If HALTS says true, namely that TROUBLE will halt on 
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itself, then TROUBLE loops (i.e., it doesn't halt, thus contradicting our assumption that HALTS 
could do the job).  But if HALTS says FALSE, namely that TROUBLE will not halt on itself, 
then TROUBLE promptly halts, thus again proving our supposed oracle HALTS wrong.  Thus 
HALTS cannot exist. 
 
We've used a sort of stripped down version of diagonalization here [slide - Viewing the Halting 
Problem as Diagonalization] in which we don't care about the whole row of the item that 
creates the contradiction.  We're only invoking HALTS with two identical inputs.  It's just the 
single element that we care about and that causes the problem. 

Let's Revisit Some Problems 

Let's look again at the collection of problems that we started this whole process with.  [slide - 
Let's Revisit Some Problems] 
 
Problem 1 can be solved with a finite state machine. 
 
Problem 2 can be solved with a PDA. 
 
Problem 3 can be solved with a Turing Machine. 
 
Problem 4 can be semi solved with a Turning Machine, but it isn't guaranteed to halt. 
 
Problem 5 can't even be stated. 

So What's Left? 

 


