M 340L-CS

Homework Set 3

1. Determine if the system has a nontrivial solution. (One SAXPY operation - and no other row operations - is sufficient to determine the answer.)

$$
\begin{aligned}
5 x_{1}-3 x_{2}+2 x_{3} & =0 \\
-3 x_{1}-4 x_{2}+2 x_{3} & =0 \\
& {\left[\begin{array}{crrr}
5 & -3 & 2 & 0 \\
-3 & -4 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
5 & -3 & 2 & 0 \\
0 & -29 / 5 & 16 / 5 & 0
\end{array}\right] \cdot x_{3} \text { is free so there is a nontrivial solution. } }
\end{aligned}
$$

2. Write the solution set of the given homogeneous system in parametric vector form. (Follow the method of Examples 1 and 2 in Lay 1.5)

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=0 \\
& 2 x_{1}+x_{2}-3 x_{3}=0 \\
& -x_{1}+x_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
2 & 1 & -3 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -3 & 3 & 0 \\
0 & 3 & -3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

x_{3} is free, $x_{2}=x_{3}, x_{1}=x_{3}$. In parametric vector form this is $x=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
In problems 3 and 4, describe all solutions of $A x=0$ in parametric vector form, where A is row equivalent to the given matrix.
3.
$\left[\begin{array}{cccc}1 & -3 & -8 & 5 \\ 0 & 1 & 2 & -4\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -7 \\
0 & 1 & 2 & -4
\end{array}\right] . x_{4} \text { is free and } x_{3} \text { is free, } x_{2}=-2 x_{3}+4 x_{4},} \\
& x_{1}=2 x_{3}+7 x_{4} \text {. In parametric vector form this is } x=x_{3}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
4 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

4.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & -2 & 3 & -6 & 5 & 0 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \\
& {\left[\begin{array}{cccccc}
1 & -2 & 3 & -6 & 5 & 0 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & -2 & 3 & 0 & 29 & -36 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & -2 & 3 & 0 & 29 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

$$
x_{6}=0, x_{5} \text { is free, } x_{4}=-4 x_{5}, x_{3} \text { is free, } x_{2} \text { is free, and } x_{1}=2 x_{2}-3 x_{3}-29 x_{5} . \text { In parametric }
$$

$$
\text { vector form this is } x=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-29 \\
0 \\
0 \\
-4 \\
1 \\
0
\end{array}\right]
$$

5. Mark each statement True or False then justify your answer.
a. A homogeneous system of equations can be inconsistent.

False. Since the zero vector is always a solution, a homogeneous system of equations can never be inconsistent.
b. If x is a nontrivial solution of $A x=0$, then every entry in x is nonzero.

False. A nontrivial solution need only have at least one non-zero component.
c. The effect of adding p to a vector is to move the vector in a direction parallel to p.

True. The vertices $0, p, x+p, x$ form a parallelogram so the effect of adding p to x to get $x+p$ is a line parallel to the line from zero to p.
d. The equation $A x=b$ is homogeneous if the zero vector is a solution.

True. Since $A 0=b=0$, the equation $A x=b$ is also $A x=0$ and thus is homogeneous.
6. If $b \neq 0$, can the solution set of $A x=b$ be a plane through the origin? Explain.

No, if $b \neq 0$, the solution set of $A x=b$ cannot be a plane through the origin. If it were then $A 0=0=b \neq 0$, which is a contradiction.
7. Construct a 3×3 nonzero matrix A such that the vector $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ is a solution of $A x=0$.

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

8. Given $A=\left[\begin{array}{cc}3 & -2 \\ -6 & 4 \\ 12 & -8\end{array}\right]$, find one nontrivial solution of $A x=0$ by inspection.

Since the twice the first column plus three times the third column is zero, $x=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

