Theorem: If $n \geq 2$, then $n^{3}>2 n+3$.

Proof 1:

We proceed by induction. The base case is $n=2$, and for that we have $n^{3}=8>7=2 n+3$. We now assume $n^{3}>2 n+3$, and consider the result for $n+1$. We have:

$$
\begin{aligned}
(n+1)^{3} & =n^{3}+3 n^{2}+3 n+1 \\
& \geq n^{3}+3 n+1 \\
& \geq n^{3}+7 \quad(\text { since } n \geq 2) \\
& >2 n+3+7 \quad(\text { by the inductive hypothesis }) \\
& >2 n+2+3 \\
& >2(n+1)+3,
\end{aligned}
$$

which concludes the proof.

Notes:

1. Some people may object to all of the uses of \geq when I could have used $>$. Why did I do something strange like that? First ask yourself: "Did he do something incorrect?". To that you must answer that what I did is correct. You may be telling yourself "... but you could have made a stronger statement by using >.". I totally agree, but why should I? I want to produce a proof that is as easy to believe as possible. Please agree that proving a weaker claim with \geq is always easier than the stronger claim with $>$. If I have a string of inequalities with \geq and at least one use of $>$, then I get the strict inequality overall. If $>$ actually is obvious (and I admit some of these are) use it but realize that \geq works as long as there is at least one > in the chain. (I was trying to make a point here.)
2. Now look at the last three lines of the chain of inequalities. How did I have the foresight to see that $2+3$ stuff and all? I didn't. I did some scratch paper work to see what I would need on those lines knowing that the final line had to be $>2(n+1)+3$. As always, that scratch paper work is not part of the proof.
3. There are non-inductive proofs of this result. Here is one that uses the Fundamental Theorem of Calculus.

Theorem: If $n \geq 2$, then $n^{3}>2 n+3$.

Proof 2:

The result is equivalent to "If $n \geq 2$, then $n^{3}-2 n-3>0$.". Define $f(n)=n^{3}-2 n-3$, and notice that $f(2)=2^{3}-2 \cdot 2-3=1>0$. Also, notice that

$$
f^{\prime}(t)=3 t^{2}-2 \geq 3 \cdot 4-2=10>0, \text { for } n \geq 2 \text {. }
$$

Thus, $\int_{2}^{n} f^{\prime}(t) d t \geq 0$, since it is the integral of a positive function. From the Fundamental Theorem of Calculus, we have

$$
f(n)=f(2)+\int_{2}^{n} f^{\prime}(t) d t \geq f(2)=1>0 .
$$

The proof I did on the board of the next one was fine unless someone wants a Querium style proof. Here is the Querium style proof:

Theorem: For any sets A, B, and C, if $A \subseteq B$, then $C-B \subseteq C-A$.

Proof:

1. $x \in C-B$
2. $x \in C \wedge \neg(x \in B) \quad$ Definition of set difference applied to [1]
3. $x \in C$

Simplification
4. $\neg(x \in B)$

Simplification
5. $A \subseteq B$

Premise
6. $x \in A \rightarrow x \in B$

Definition of subset applied to
7. $\neg(x \in A)$

Modus Tolens
8. $x \in C \wedge \neg(x \in A) \quad$ Conjunction
9. $x \in C-A$

Definition of set difference applied to [8]

