M 340L - CS
 Homework Set 11

Note: Scale all eigenvectors so the largest component is +1 .

1. How do perturbations affect eigenvalues and eigenvectors?

a. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$. What are its eigenvalues and eigenvectors? (See the note above regarding the scaling of eigenvectors and make sure you do it throughout the homew ork.)
b. Let $B=\left[\begin{array}{cc}2 & 1 \\ 0 & 2+\varepsilon\end{array}\right]$. What are its eigenvalues and eigenvectors? (Y our answ ers should be in terms of the perturbation parameter ε.)
c. Describe the effect of the perturbation ε on eigenvalues and eigenvectors of A. Comment on the linear independence of the eigenvectors of B.
d. Let $C=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. What are its eigenvalues and eigenvectors? (Choose linearly independent eigenvectors.)
e. Let $D=\left[\begin{array}{ll}2 & \varepsilon \\ 0 & 2\end{array}\right]$. What are its eigenvalues and eigenvectors?
f. Describe the effect of the perturbation ε on eigenvalues and eigenvectors of C.
2. Using the diagonal form to compute high powers:

Let $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$. Feel free to express answers in parts \boldsymbol{c}, d, and \boldsymbol{e} using algebraic expressions involving powers.
a. What are its eigenvalues and eigenvectors?
b. Using part a. form D, a diagonal matrix of eigenvalues, form V whose columns are the associated eigenvectors, then compute V^{-1}, and finally $V D V^{-1}$. Compare $V D V^{-1}$ to A.
c. Using part b. and the fact that $A^{k}=V D^{k} V^{-1}$, what is $A^{100} y$, for $y=\left[\begin{array}{l}1 \\ 2\end{array}\right]$? (Do not compute A^{100} - yet. Use associativity in a clever way.)
d. Express your answer in part \mathbf{c} as $A^{100} y=\gamma\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$, where γ is such that the largest component of $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ is +1 . Compare $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ to the eigenvector corresponding to λ_{1}.
e. Using part b., what is A^{100} ?

3. All zero eigenvalues:

Find a simple non-zero matrix having all zero eigenvalues.

4. A Markov process:

A city has two restaurants: A and B. 96% of the time, a person leaving A will return to A the next time she goes to either A or B. Thus, 4% of the time, she will switch to B the next time. 84% of the time, a person leaving B will return to B the next time she goes to either A or B. Thus, 16% of the time, she will switch to A the next time. This diagram summarizes the situation:

Let $A=\left[\begin{array}{cc}24 / 25 & 4 / 25 \\ 1 / 25 & 21 / 25\end{array}\right]$ (i.e. the matrix of transitions). use $y=\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$.
a. What are its eigenvalues and eigenvectors?
b. Using part a. express $A=V D V^{-1}$ (where the columns of V are the eigenvectors and D is a diagonal matrix containing the associated eigenvalues.)
c. Using the fact that $A^{k}=V D^{k} V^{-1}$, what is $A^{100} y$, for $y=\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$? (See comments in 1c.)
d. Express your answer in part \mathbf{c} as $A^{100} y=\gamma\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$, where γ is such that the largest component of $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ is +1 . Compare $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ to the eigenvector corresponding to λ_{1}.
e. Using part b., what is A^{100} ?

