Hydra

(CS380L: Mike Dahlin

February 5, 2002

1 Preliminaries

1.1 Review

e Unix

Theme: Simplicity and elegance
File I/O

— Process management

— Lessons: compare and contrast with Multics, THE

1.2 Outline

e “Hydra: The kernel of a multiprocessor operating system”

— Introduction
— Detailed mechanism
— An example

— Postscript

1.3 Preview

e Structure/extensibility: Synthesis, Exokernel, Disco
e Concurrency: Mesa, threads

¢ Communication: RPC, Active messages, duality of memory and com-
munication



2 Introduction

e Background

— Experimental machine and experimental OS
— key concepts: (micro-) kernel and capability
— Mcro-kernel

* Minimal kernel in supervisor mode
* Many OS services at user level

— Push these ideas to the extreme
e Key ideas

— Non-hierarchical protection
— User-extensible type system
— Capability-based protection

— “Sealing/unsealing” for crossing protection boundaries

3 Detailed mechanism

3.1 Non-hierarchical protection



user l

user | kernel/subsystems

&)

user/supervisor L O O :
rings

e Hierarchical systems

— Inner rings have strictly more power

— Doesnt scale to many components
¢ Non-hierarchical systems

— Subsystem: protected collection of code and data

— No one subsystem is intrinsically more powerful than the other



3.2 Extensible type system

e Objects

— name
— type, and

— representation
o Three-level type hierarchy

— objects
— type objects
— the TYPE type object

3.3 Capabilities and instance hierarchy




3.4

Capability

— object name
— privileges

— no other means of referencing objects
Instance hierarchy

— Embed capabilities as you would pointers

— Can have cycles (so need garbage collection)

Built-in basic types
Page
Procedure
— Static info associated with procedure
Local name space (LNS)
— - activation record
Process
— - stack of LNS

Illustration:




3.5 Rights amplification and attenuation

e Example: Protected Queue subsystem; append method

— Before calling, process should not be able to change the queue

— Call should amplify rights

— During call, process (queue code) should not be able to modify
the object being inserted

— Call should attenuate rights

¢ One implementation: Seal/unseal

e The “owning” subsystem

— creates,
— “seals”, and

— hands out an object
e “Other” subsystems

— cant manipulate the object

— can only hand it back to the owning system
e The “owning” subsystem

— receives,

— unseals, and



manipulates the object

Seal/unseal can be explicit or implicit

Explicit: e.g., Pass encrypted objects
Implicit: e.g., Pass protected pointers (e.g., hydra)

Compare: Explicit allows distributed system; implicit allows pass
by reference

Queue example (with explicit seal):

Pass around encrypted queue

Pass queue encrypted stuff to add

Hydra template: the “Fifth Element”

a tuple: (type, old privs, new privs)

one template for each argument in a procedure

Protection boundary crossing

the kernel checks each argument
if type matches, and
old privs are sufficient

amplify rights to allow new privs

Example: Queue::Append(Queue g, Data d);

Suppose you have a Queue that accepts SecretItems, but in the
course of debugging the queue, you want to call the protected
SecretItem::print method.

* e.g.,
* Queue:enqueue(Queue q [needs: pub, amplifies: rw|, Se-
cretltem i [needs: NULL, amplifies NULL]);

* SecretItem::print(SecretItem s[needs: view, amplifies: rw])

3 ways to do this

1. Turn off security in SecretItem::print()



* e.g.,
* Queue::enqueue(Queue q [needs: pub, amplifies: rw], Se-
cretItem i [needs: NULL, amplifies NULL))...i.print()...;

* SecretItem::print(SecretItem s[needs: NULL, ampli-
fies: rw))

* DA: Turns off security for anyone that wants to print a
secret item!

2. Use capabilities passed in with Secretltem argument
* e.g.,
* Queue::enqueue(Queue q [needs: pub, amplifies: rw|, Se-
cretItem i [needs: NULL, amplifies NULL))...i.print()...;
* SecretItem::print(SecretItem s[needs: view, amplifies: rw])

* DA: Only get partial debugging info (e.g., for those items
for which caller happened to include a permission he
probably shouldn’t have included...).

3. Trust Queue class to access protected SecretItem methods
* e.g.,
* Queue::enqueue(Queue q [needs: pub, amplifies: rw|, Se-
cretItem i [needs: NULL, amplifies view])...i.print()...;

% SecretItem::print(SecretItem s[needs: view, amplifies:
rw])

* Secretltem declaration ... friend Queue;...

* Note: Only can do this if you can modify both Queue
and Secretltem code...that seems right.

*x “Friend” declaration is syntactic sugar...how could you
implement it?
- Creator of SecretItemClass uses SecretItemClass
- Pass SICPower capability to Queue

— Easy to see how to amplify/attenuate “this” object
— Param0: Type = Queue, In = append, Out = read, write

e Limiting amplification SKip this — see hydra-example.pdf
e Paper implies: all parameters checked and potentially amplified

e Given the above, it would seem the author of a procedure could take
rights to everything.



e Example: Hand reference to SecretData to EvilQueue

e Example: Hand reference to disk to EvilQueue

— How to prevent EvilQueue from amplifying its rights (e.g., to
call SecretData::RevealSecret method or Disk::RawRead method)
when it shouldn’t?

e Answer: I'm confused...paper clearly implies that procedure can am-
plify permissions on incoming types, but that clearly can’t be right (or
at least it can’t be the whole story).

— Answer 1: Only allow Class X to amplify pointers of type X

%

Simple. “Type specific” checking all happens within type.
Why amplify earlier than this, anyhow (the reference only
can be used to call the object...do security checking then.)

— Answer 2: Anly allow Class X to amplify pointers of type Y if
type X has a capability to do so

*

*

Type X’s type object contains capabilities

At instantiation time, check instantiated templates (from the
type class) against the capabilities (from the type class)
This is my best guess at what they mean...

Could imagine Hydra support: class X has by default the
capability to specify Templates for class X; class X can hand
this capability to class Y’s object if it wants

Could imagine language support to automate this in com-
piler...: “friend class” etc.

— Answer 3...Suggestions/interpretations?

4 Admin

¢ Project



5 Example
skip this — see separate hydra-example.pdf

1. Log in

e clist and shared library

2. Create gizmo type

e create new type using TYPE type object

10



e store capability in private clist

e Gizmo privliges

3. Package and publish gizmo

create gizmo templates

e package and publish procedures and templates

publish restricted copy of gizmo type

4. Another user logs in

e Gain capability for shared library

11



5. User 2 creates gizmo object

e Invoke gizmo::create()
6. User 2 invokes gizmo::twiddle()

e Rights amplification via template
— type = gizmo
— old priv = twiddle

— new priv = read/write

6 Postscript

o A “Glorious failure”

e Persistent object stores keep re-inventing this idea

— Java?

— .net?

12



e Extra credit bounty: It seems to me that Multics, Hydra, and Java
all do about the same thing with about the same mechanisms, but
the differences in terminology are significant enough that it is hard to
compare the mechanisms.

Write a crisp report that compares and contrasts the fine-grained pro-
tection of (a) Multics, (b) Hydra, and (c) Java 2 (stack inspection
and/or Wallach’s “cleaner” formulation in his dissertation). There
should be at least two goals. First, to teach the reader how these
things really work. You might consider stepping through a detailed
example of both a non-trivial shared object (such as the “bibliogra-
phy” in the Hydra paper) and initialization of rights access (e.g., login
in hydra, Java’s policy file, etc.). Second, you should compare these
mechanisms: What specific mechanisms are common across systems?
What general abilities are similarly easy to support (even if via super-
ficially different means)? What can some systems do easily but others
not do? Can one/how does one implement system A in terms of system
B. It might be useful to create a common terminology across all of the
systems and describe each in those terms. (References: Multics paper,
Hydra paper, Java 2 security documentation from javadocs.sun.com,
and Dan Wallach’s (formerly of Princeton, now of Rice) SOSP paper
(for a description of the ideas in Stack Inspection in Java) and thesis
(for a cleaner design that has not, to my knowledge, been implemented
in most Java systems.)

13



