Workshop I - Max-k-CSP, Label Cover, Unique Label Cover

The workshop will be held on Tuesday, August 30th. There will be 5 presenters in the order given here, and each presentation should be 5 minutes. Register to lecture on August 25-26 upon announcement from the TA.

1 Max-k-CSP

An instance of $\operatorname{Max}-\mathrm{k}-\operatorname{CSP}(\Sigma)$ consists of a set of n variables taking values from a finite alphabet Σ along with m constraints, each of which is a relation on the assignments of k of the variables. The objective is to assign values to the variables so as to maximize the fraction of constraints satisfied.

In your presentation you should define the $\operatorname{Max}-\mathrm{k}-\operatorname{CSP}(\Sigma)$ problem and give interesting examples of this problem. Last, present an efficient algorithm which satisfies $\frac{1}{|\Sigma|^{k}}$ fraction of the optimal number of constraints.

2 Label Cover

An instance of Label Cover consists of a bipartite graph (L, R, E), a finite set of labels Σ_{L} for the left vertices and a finite set of labels Σ_{R} for the right vertices, as well as a family of functions $\left\{f_{e}: \Sigma_{L} \rightarrow \Sigma_{R} \cup\{\perp\} \mid e \in E\right\}$. A labelling is a pair of functions $l_{L}: L \rightarrow \Sigma_{L}$ and $l_{R}: R \rightarrow \Sigma_{R}$. An edge $e=(u, v)$ is satisfied if $f_{e}\left(l_{L}(u)\right)=l_{R}(v)$. Our objective is to find l_{L}, l_{R} so as to maximize the fraction of edges satisfied.

$2.1 \frac{1}{\left|\Sigma_{R}\right|}$-Approximation

In your presentation you should define the Label Cover problem and discuss the connection to Max-k-CSP. Last, present an efficient algorithm which satisfies $\frac{1}{\left|\Sigma_{R}\right|}$ fraction of the optimal number of constraints.

$2.2 \frac{d}{n}$-Approximation

Assume we are given an instance of label cover where there are n right vertices, and each of the left vertices has degree d. Present an efficient algorithm which satisfies $\frac{d}{n}$ fraction of the optimal number of constraints. Discuss the special case where the graph is a complete bipartite graph (i.e., $d=n$).

$2.3 \quad \frac{1}{d}$-Approximation $\rightarrow\left(\left|\Sigma_{R}\right| n\right)^{-1 / 3}$-Approximation

Assume our instance is as in part 2. Present an algorithm which satisfies $\frac{1}{d}$ fraction of the optimal number of constraints. Combine the three previous algorithms, and present an algorithm which satisfies $\left(\left|\Sigma_{R}\right| n\right)^{-1 / 3}$ fraction of the optimal number of constraints. Hint: Geometric Mean

3 Unique Label Cover

An instance of Unique Label Cover consists of a bipartite graph (L, R, E), a finite set of labels Σ, and a set of 1-1 functions $\left\{f_{e}: \Sigma \rightarrow \Sigma \mid e \in E\right\}$. A labeling is a function $l: L \cup R \rightarrow \Sigma$. An edge $e=(u, v)$ is satisfied if $f_{e}(l(u))=l(v)$. Our objective is to find a labelling so as to maximize the number of edges satisfied.

In your presentation present Unique Label Cover and show how to efficiently decide if a given instance of Unique Label Cover has a labelling which satisfies all the constraints.

