CS 378 — Big Data Programming

Lecture 13
more on

Data Organization Patterns



Review

* Assignment 6 — User Session

 Questions/Issues?



Assignment 6

Define an Avro object for user session
— One user session for each unique userlID
— Session will include an array of events

— Events ordered by timestamp

|dentify data associated with the session as a whole
ldentify data associated with individual events
Include all the fields in the log entries

Create enums where requested



Data Organization Patterns

e Structured to hierarchical pattern
— User session is one such example
* Organizing web logs by user

— Textbook shows organizing posts and comments
from StackOverflow



Multiplelnputs

* |tis possible to define multiple mappers
 Each mapper can read a different input format

 Each mapper transforms the input data to a
common format for output

— Extracts the key
— Puts the data into a common data structure



Data Flow

Figure 4-1 from MapReduce Design Patterns

Data Set
A

Mapper

(post ID, post data)

Data Set
A
Mapper

—

Data Set
A
Mapper

—

Data Set
B
Mapper

(parent ID, child data)

Data Set
B
Mapper

Shuffle
and Sort

—

Heirarchy
Reducer

—

Heirarchy
Reducer

Output
Part

Output
Part




Partitioning
* Organize “similar” records into partitions

e Why?
— Future jobs will only focus on subsets of the data
* Partitioning schemes:
— Time: hour, day, week, month, year
— Geography: ZIP, DMA, state, time zone, country
— Data source: web site
— Data type



Partitioning

* No downside, as a mapReduce job can run
over all partitions if needed

 We do need to know a priori how many
partitions we want
— Can run a job that scans and summarizes the data

— Get possible values, and counts
— Just like we did for user sessions



Partitioning

 What are some of the ways we might partition
our user sessions?

e How would we do this?



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide




Partitioning

e Definea Partitioner
* Examines each map () output pair
* Computes a partition number



Data Flow

Figure 4-2 from MapReduce Design Patterns

Input | > [dentity é >

. —’ E= o 4

Split Mapper =3
Q.
Input |dentity é ' '

: = —p [dentit Part
Split | Mapper 5> > Reduce): >
Input ‘ > |dentity é '

. —> E= e 4
Split Mapper é_L; >

Shuffle > dentity > Part
- and Sort Reducer B
Input [dentity é '

. —> =

Split Mapper E >
: ) N dentity Part
Input | > Identity S — =

: | = > Reducer C

Split Mapper = e
Q.
Input | > [dentity é :

. —’ E= e 4

Split Mapper E >




Binning

* Similar to partitioning
— Want to organize output into categories
— Map-only pattern (# reduce tasks set to 0)

* Mapper output written to output directories

e UsesMultipleOutputs class
— Call write () onMultipleOutputs, not Context
— For each category, each mapper writes a file
— Expensive if many mappers and many categories



Binnig Data Flow

Figure 4-3 from MapReduce Design Patterns

Input Binning
Split

Input
Split

a=

Input Binning
Split

i

i
I B

~




Shuffle

Want to distribute output randomly
Mapper generates a random key for each output

If you want to reuse a mapper, you could add a
partitioner that generates a random partition #
— Mapper code is then unchanged

Reducer can sort based on some other random key
— Further shuffling the data (input order now gone)



Shuffle = Why Do This?

Random sampling
Randomly select subset of the data (downsample)
Multiple random subsets for

— Model generation and testing — cross validation
— Train on 80%, test on 20%, for 5-fold cross validation

Anonymizing data (example from the textbook)

— Replace Pll with a random key



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide




Total Order Sorting

* |ndividual reducers can sort their keys

— Need to retain all data in memory
— Not sorted when concatenated with other reducer output

 We can identify subranges of the key space

— We know the sort position of each subrange relative to
other subranges

— Use a partitioner to assign a key to its subrange
— Reducer simply outputs the values. Why?



Total Order Sorting

* |ssues in selecting subranges of the key space

 Would like subranges to be roughly equivalent in size

— Can do an analysis of the key space by random sample
— Will be a separate mapReduce job
— Need to redo this analysis if key distribution changes

e Subrange ideas for our session key space?



Total Order Sorting

 Hadoop provides TotalOrderPartitioner

* Have to provide a “partition file”

— Specifies the key range of each partition
— Number of reducers must equal number of partitions

e Custom partitioner for our user session key space

— Based on userld
— Other data to use for sort?



