CS 378 — Big Data Programming

Lecture 27/
Partitioning Example,
Aggregation and Broadcast Variables



Review

* Assignment 12
— Create user sessions
— Order events by timestamp
— Order sessions by user ID
— Partition sessions by referring domain
— Filter out large sessions (> 1000 events)



Partitioning - Review

* Prudent partitioning can greatly reduce the
amount of communication (shuffle)

e |f an RDD is scanned only once, no need

* |f an RDD is reused multiple times in key-
oriented operations
— Partitioning can improve performance significantly



Partitioning

Figure 4-4, from Learning Spark

userData joined events

=

2

<
X
IR

AN
77 ~\

>
network communication

Big Data Programming



userData

Partitioning
Figure 4-5, from Learning Spark

joined events

/

network communication

local reference

Big Data Programming



Example - Page Rank

* Walk through page rank algorithm for Spark

* See a more complex algorithm using Spark
— lterative

* Show benefits of partitioning, persistence



What is Page Rank?

Algorithm for weighting linked documents
Part of Google’s ranking algorithm — lots of other stuff included

Basic idea

Rank++ for inbound links
Rank++ for high rank links

In this image:
Size proportional to # inbound links

PageRank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res.png

Big Data Programming



Basic Page Rank Algorithm

From Learning Spark, pp. 66-67

* Give each page an initial rank of 1

* On each iteration, have page p send a contribution of
rank (p) /numNeighbors (p) to its neighbors

e Set each page’s rank to

0.15 + 0.85 * contributionsReceived



Page Rank - Example
- i ’/‘ F
3 g2

D

pdgEHdl'I"l Gl .GZ

Image from: en.wikipedia.org/wiki/File:PageRank-hi-res.png

Big Data Programming



Accumulators

In our session generator app,

Suppose we wanted to count the number of
sessions that are filtered due to size (> 1000)

How would we do this?

How did we do this using Hadoop map-reduce?



Accumulators

 An accumulator provides a means for

aggregating values from worker nodes back to
the driver node.

* Create an accumulator from the context

* Increment the accumulator in functions
passed to worker nodes



Accumulators

* For failures or re-evaluation, what happens?

e Actions:

— Each task’s update applied only once

* Transformations:
— No guarantee that task updates applied only once
— Re-evaluation will update accumulator each time



Broadcast Variables

* |f you want to access a read-only data structure
from multiple transformations

— It will be wrapped into each closure

— Wasteful if the data is large

e A broadcast variable addresses this issue
— Sent to each worker node only once
— Accessible from closures sent to the workers

— Data must be serializable



