CS 378 — Big Data Programming

Lecture 5
Summarization Patterns

Review
* Assignment 2 — Questions?

* If you'd like to use guava (Google collections classes)
— pom.xml available for assignment 2

— Includes dependency for guava
— Creates an “uber” JAR for upload to AWS

Summarization

e Other summarizations of interest

— Min, max, mean

* Suppose we are interested in these metrics for
paragraph length (Assignment 2 data)

— If paragraph lengths are normally distributed, then the
median will be very near the mean

— If the distribution of paragraph lengths is skewed, then the
mean and median will be very different

Summarization

Min and max are straightforward

For each paragraph, output two values

— Min length (the length of the current paragraph)
— Max length (the length of the current paragraph)
— Key?

Combiner will get a list of value pairs

— Select the min, max from the list, output the values
— Key?

Reducer does the same

Summarization

e Median
— Get all the values, sort them, then find the middle

e Since our computation is distributed, no mapper
sees all the values

* Should we send them all to one reducer?
— Not utilizing map-reduce (computation not distributed)
— Data sizes likely too large to keep in memory

Summarization

Median

— Keep the unique paragraph lengths, and
— The frequency of each length

Map output:
— <paragraph length, 1>

Combiner gets a list of these pairs and updates the
count for recurring lengths

Reducer does the same, then computes the median

Summarization

 Median
— Hadoop provides the SortedMapWritable class
— Can associate a frequency count with a paragraph length

— Keeps the lengths in sorted order

e See the example in Chapter 2 of Map-Reduce Design
Patterns

* How could we compute all in one pass over the data?

— min, max, median

Counters

 Hadoop map-reduce infrastructure provides counters
— Accessed by group name

— Cannot have a large number of counters
* For example, can’t use counters to solve WordCount

— A few tens of counters can be used

* Counters are stored in memory on JobTracker

Counters

Figure 2-6, MapReduce Design Patterns

Counting
Mapper

.\A Job Success (L TG
BT TaskTracker JobTracker Courtens
Mapper Counter C

TaskTracker

Counter D

W TaskTracker
— ./

How Hadoop MapReduce Works

* We've seen some terms like:
— Job
— JobTracker
— TaskTracker

e Let’s look at what they do

e Details from Chapter 6, Hadoop: The Definitive Guide
39 Edition

How Hadoop MapReduce Works

Figure 6-1, Hadoop: The Definitive Guide 3™ Edition

| S getnewjobi |

l MapReduce |1:runjob submitjiob | (IO "

| pr':'gram 1:1unjob p“. et SUDILIOD s BN JobTracker . "..‘,:S:initializejob
| client VM ; 6: retrieve 47 H

| i input splits .. *

| client node P SP : jobtracker node
! 3:copyjob 7: heartbeat :

! resources (returns task) |

) \ :

| Shared

: FIIeSystEm P e TaskTracker

! (e.g., HDFS) 8: retrieve job

b resources - (
: 9: launchg

: A 4

! child JVYM

E Child

: 10: rung

! v

E MapTask

! or

: ReduceTask

! tasktracker node

Job Submission

* Job submission
— Input files exist?
— Output directory exist?
* If yes, it fails. Hadoop expects to create this directory

— Copy resources to HDFS
* JAR files
e Configuration file
* Computed file splits

Job Tracker

Creates tasks (work to be done)
— Map task for each input split
— Requested number of reducer tasks
— Job setup, job cleanup tasks

Map tasks are assigned to task trackers that are “close”
to the input split location

— Data local preferred
— Rack local next

Reduce task can go anywhere. Why?
Scheduling algorithm orders the tasks

Task Tracker

e Configured for several map and reduce tasks

* Periodically sends a “heartbeat” to job tracker
— “I'm still alive”
— “Ready for new task”

* For a new task
— Copy files to local file system (JAR, configuration)
— Launch a new JVM (TaskRunner)
— Load the mapper/reducer class and call its method
— Update the task tracker progress

Task Progress

* Mapper
— What portion of the input has been processed

* Reducer — more complicated
— Sort, shuffle and reduce are considered here

— Progress is an estimate of how much of the total
work has been done

Shuffle

Figure 6-6, Hadoop: The Definitive Guide 3" Edition

“Sort” Reduce
phase phase
reduce task
- ’-
merge
/v-"

/ merge output

) /vmlxrure of in-memory and on-d:sk data

.
-,
®e,
.
.
L
-
.....

MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide

