
CS	378	–	Big	Data	Programming	

Lecture	11	
more	on	

Data	Organiza:on	Pa;erns	

CS	378	-	Fall	2016	 Big	Data	Programming	 1	



Assignment	5	-	Review	
•  Define	an	Avro	object	for	user	session	
–  One	user	session	for	each	unique	userID	
–  Session	will	include	an	array	of	events	
–  Events	ordered	by	:mestamp	

•  Iden:fy	data	associated	with	the	session	as	a	whole	
•  Iden:fy	data	associated	with	individual	events	
•  Include	all	the	fields	in	the	log	entries	
•  Create	enums	where	requested	

CS	378	-	Fall	2016	 Big	Data	Programming	 2	



Data	Organiza:on	Pa;erns	

•  Structured	to	hierarchical	pa;ern	
– User	session	is	one	such	example	

•  Organizing	web	logs	by	user	
– Textbook	shows	organizing	posts	and	comments	
from	StackOverflow	

	

CS	378	-	Fall	2016	 Big	Data	Programming	 3	



Par::oning	

•  Organize	“similar”	records	into	par::ons	

•  Why?	
–  Future	jobs	will	only	focus	on	subsets	of	the	data	

•  Par::oning	schemes:	
–  Time:	hour,	day,	week,	month,	year	
– Geography:	ZIP,	DMA,	state,	:me	zone,	country	
– Data	source:	web	site	
– Data	type	

CS	378	-	Fall	2016	 Big	Data	Programming	 4	



Par::oning	

•  No	downside,	as	a	mapReduce	job	can	run	
over	all	par::ons	if	needed	
– Note:	Avoid	crea:ng	many	small	files	

•  We	do	need	to	know	a	priori	how	many	
par::ons	we	want	
– Can	run	a	job	that	scans	and	summarizes	the	data	
– Get	possible	values,	and	counts	
–  Just	like	we	did	for	user	sessions	

CS	378	-	Fall	2016	 Big	Data	Programming	 5	



Par::oning	

•  What	are	some	of	the	ways	we	might	par::on	
our	user	sessions?	

•  How	would	we	do	this?	

CS	378	-	Fall	2016	 Big	Data	Programming	 6	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	Defini:ve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	-	Fall	2016	 Big	Data	Programming	 7	



Par::oning	

•  Define	a	Partitioner 
•  Examines	each	map()	output	pair	
•  Computes	a	par::on	number	

•  Example	

CS	378	-	Fall	2016	 Big	Data	Programming	 8	



Data	Flow	
Figure	4-2	from	MapReduce	Design	Pa;erns	

CS	378	-	Fall	2016	 Big	Data	Programming	 9	



Binning	

•  Similar	to	par::oning	
– Want	to	organize	output	into	categories	
– Map-only	pa;ern	(#	reduce	tasks	set	to	0)	

•  Mapper	output	wri;en	to	output	directories	
•  Uses	MultipleOutputs	class	
– Call	write()	on	MultipleOutputs,	not	Context 
– For	each	category,	each	mapper	writes	a	file	
– Expensive	if	many	mappers	and	many	categories	

CS	378	-	Fall	2016	 Big	Data	Programming	 10	



Binning	Data	Flow	
Figure	4-3	from	MapReduce	Design	Pa;erns	

CS	378	-	Fall	2016	 Big	Data	Programming	 11	



Discussion	

•  When	should	we	use	par::oning?	

•  When	should	we	use	binning?	

•  Consider	the	user	sessions	we’ve	created	

CS	378	-	Fall	2016	 Big	Data	Programming	 12	



Shuffle	

•  Want	to	distribute	output	randomly	

•  Mapper	generates	a	random	key	for	each	output	

•  If	you	want	to	reuse	a	mapper,	you	could	add	a	
par::oner	that	generates	a	random	par::on	#	
– Mapper	code	is	then	unchanged	

•  Reducer	can	sort	based	on	some	other	random	key	
–  Further	shuffling	the	data	(input	order	now	gone)	

CS	378	-	Fall	2016	 Big	Data	Programming	 13	



Shuffle	–	Why	Do	This?	

•  Random	sampling	
•  Randomly	select	subset	of	the	data	(downsample)	
•  Mul:ple	random	subsets	for	
– Model	genera:on	and	tes:ng	–	cross	valida:on	
–  Train	on	80%,	test	on	20%,	for	5-fold	cross	valida:on	

•  Anonymizing	data	(example	from	the	textbook)	
–  Replace	PII	with	a	random	key	

CS	378	-	Fall	2016	 Big	Data	Programming	 14	



Discussion	

•  Suppose	we	wanted	to	shuffle	our	user	sessions	

•  When	could	we	accomplish	this	in	the	process	of	
crea:ng	sessions?	

CS	378	-	Fall	2016	 Big	Data	Programming	 15	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	Defini:ve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	-	Fall	2016	 Big	Data	Programming	 16	



Total	Order	Sor:ng	

•  Individual	reducers	can	sort	their	keys	
–  Need	to	retain	all	data	in	memory	
–  Not	sorted	when	concatenated	with	other	reducer	output	

•  We	can	iden:fy	subranges	of	the	key	space	
– We	know	the	sort	posi:on	of	each	subrange	rela:ve	to	
other	subranges	

–  Use	a	par::oner	to	assign	a	key	to	its	subrange	
–  Reducer	simply	outputs	the	values.		Why?	

CS	378	-	Fall	2016	 Big	Data	Programming	 17	



Total	Order	Sor:ng	

•  Issues	in	selec:ng	subranges	of	the	key	space	

•  Would	like	subranges	to	be	roughly	equivalent	in	size	
–  Can	do	an	analysis	of	the	key	space	by	random	sample	
– Will	be	a	separate	mapReduce	job	
–  Need	to	redo	this	analysis	if	key	distribu:on	changes	

•  Subrange	ideas	for	our	session	key	space?	

CS	378	-	Fall	2016	 Big	Data	Programming	 18	



Total	Order	Sor:ng	

•  Hadoop	provides	TotalOrderPartitioner 

•  Have	to	provide	a	“par::on	file”	
–  Specifies	the	key	range	of	each	par::on	
–  Number	of	reducers	must	equal	number	of	par::ons	

•  Custom	par::oner	for	our	user	session	key	space	
–  Based	on	userId	
–  Other	data	to	use	for	sort?	

CS	378	-	Fall	2016	 Big	Data	Programming	 19	


