
CS	378	–	Big	Data	Programming	

Lecture	14	
Join	Pa:erns	

CS	378	-	Fall	2016	 Big	Data	Programming	 1	

Review	

•  Assignment	6	–	Reduce-side	join	
–  User	session	and	impression	data	

•  QuesKons/issues?	

•  Review:	info	in	syslog	

•  AvroMultipleInputs

CS	378	-	Fall	2016	 Big	Data	Programming	 2	

Join	Pa:erns	

•  Review:	Suppose	we	want	to	join	many	sources,	only	
one	of	which	is	large	
–  User	sessions	(large)	
– Map	from	ciKes	to	DMA	(demographic	markeKng	area)	
–  …	

•  This	is	called	a	replicated	join	
–  All	the	small	files	will	be	replicated	to	all	machines	

CS	378	-	Fall	2016	 Big	Data	Programming	 3	

Replicated	Join	

•  Can	be	done	completely	in	mappers	
–  No	need	for	sort,	shuffle,	or	reduce	
–  Files	are	replicated	with	DistributedCache

•  RestricKons:	
–  All	but	one	of	the	inputs	must	fit	in	memory	
–  Can	only	accomplish	an	inner	join,	or	
–  A	le]	outer	join	where	the	large	data	source	is	“le]”	part	

CS	378	-	Fall	2016	 Big	Data	Programming	 4	

Replicated	Join	-	Data	Flow	
Figure	5-2	from	MapReduce	Design	Pa:erns	

CS	378	-	Fall	2016	 Big	Data	Programming	 5	

Join	Pa:erns	

•  OK,	so	replicated	join	was	interesKng,	but	more	than	
one	of	my	data	sources	is	large.	

•  Is	there	a	way	to	do	a	map-side	join	in	this	case?	
•  Or	is	reduce-side	join	my	only	opKon?	

•  If	we	organize	the	input	data	in	a	specific	way,	
•  We	can	do	this	on	the	map-side.	

CS	378	-	Fall	2016	 Big	Data	Programming	 6	

Composite	Join	

•  Hadoop	class	CompositeInputFormat

•  Restricted	to	inner,	or	full	outer	join	
•  Input	data	sets	must	have	the	same	#	of	parKKons	
–  Each	input	parKKon	must	be	sorted	by	key	
–  All	records	for	a	parKcular	key	must	be	in	the	same	parKKon	

•  Seems	pre:y	restricKve	…	

CS	378	-	Fall	2016	 Big	Data	Programming	 7	

Composite	Join	

•  These	condiKons	might	exist	for	data	from	other	
mapReduce	jobs	where:	

•  The	jobs	had	the	same	#	of	reducers	
–  Recall	that	input	data	sets	must	be	parKKoned	in	same	way	

•  The	jobs	had	the	same	foreign	key	
•  Output	files	aren’t	spli:able	

CS	378	-	Fall	2016	 Big	Data	Programming	 8	

Composite	Join	

•  If	all	those	condiKons	are	true,	this	join	works	
– Map-side	only,	so	it’s	efficient	if	we	can	use	it.	

•  If	you	find	that	you	are	preparing	and	formamng	the	
data	only	to	be	able	to	use	composite	join	

•  It’s	probably	not	worth	it.	
•  Just	use	a	reduce-side	join.	

CS	378	-	Fall	2016	 Big	Data	Programming	 9	

Composite	Join	–	Data	

CS	378	-	Fall	2016	 Big	Data	Programming	 10	

Composite	Join	–	Data	Flow	

CS	378	-	Fall	2016	 Big	Data	Programming	 11	

Composite	Join	Input	

•  In	the	driver	code	(run()	method)	
– Get	the	file	names	from	the	command	line	
– Specify	the	input	format,	join	type,	and	files	

	
conf.setInputFormat(CompositeInputFormat.class);

conf.set(“mapred.join.expr”,

 CompositeInputFormat.compose(“inner”,
 KeyValueTextInputFormat.class, file1, file2));	

CS	378	-	Fall	2016	 Big	Data	Programming	 12	

CompositeJoinInput	

•  How	might	this	implement	inner	join?	
– Outer	join?	

•  Could	we	do	any	other	join	type?	
– Le]	outer?		AnK-join?	

•  Output:	TupleWritable

CS	378	-	Fall	2016	 Big	Data	Programming	 13	

One	More	Join	Pa:ern	

•  Suppose	we	wanted	to	compare	all	cars	currently	
available	(for	sale)	to	all	other	cars	
–  To	idenKfy	“similar”	cars	
–  Usage:	“I	like	this	car,	show	me	others	like	it”	

•  This	join	is	called	“Cartesian	Product”	
–  Compare	N	items	to	M	items	requires	NxM	comparisons	
–  Not	straighqorward	to	do	with	map-reduce	

CS	378	-	Fall	2016	 Big	Data	Programming	 14	

Cartesian	Product	

•  Pairs	every	record	with	every	other	record	
– No	keys	needed	
– N	x	M	results,	for	datasets	of	size	N,	M	

•  Map-only	job	
•  But	sKll	expensive	to	compute	
•  Hadoop	class:	CartesianInputFormat		

CS	378	-	Fall	2016	 Big	Data	Programming	 15	

Cartesian	Product	

•  To	accomplish	this	join,	we’ll	need	to	pair	every	record	
with	every	other	record	

•  We	can	start	with	the	approach	for	composite	join	

•  For	composite	join,	each	mapper	read	two	files	
–  They	had	the	same	key	set	
–  The	data	was	sorted	by	key	
– We	don’t	care	about	the	keys,	just	the	‘two	file	input	’	

CS	378	-	Fall	2016	 Big	Data	Programming	 16	

Composite	Join	–	Data	Flow	

CS	378	-	Fall	2016	 Big	Data	Programming	 17	

One	Mapper,	Two	Inputs	
•  For	composite	join,	the	key	order	allowed	us	to:	

–  Read	each	of	the	two	files	only	once	
–  Worked	very	much	like	merge	sort	

•  For	Cartesian	product	
–  For	each	record	in	data	set	1	
–  We’ll	read	every	record	in	data	set	2	
–  This	pair	of	records	is	passed	to	the	mapper	

•  We’d	accomplish	this	with	a	custom	input	format	
–  RecordReader	resets	data	set	2	for	each	input	of	data	set	1	

CS	378	-	Fall	2016	 Big	Data	Programming	 18	

Cartesian	Product	–	Data	Flow	

CS	378	-	Fall	2016	 Big	Data	Programming	 19	

