
CS	378	–	Big	Data	Programming	

Lecture	24	
Closures,	Caching,	Par==ons	



Review	

•  Assignment	11:	Inverted	index	in	Spark	

•  Implementa=on	

•  Extra	credit	
– Approach	1	
– Approach	2	

Big	Data	Programming	 2	CS	378	-	Fall	2016	



Distributed	Spark	Applica=on	
Learning	Spark,	Figure	7-1	

Big	Data	Programming	 3	CS	378	-	Fall	2016	



Distribu=ng	a	Spark	Applica=on	

•  Spark	Driver	runs	your	main()	method	
– Converts	Spark	program	into	tasks	
– Creates	an	execu=on	plan	based	on	DAG	

•  DAG	is	derived	from	transforma=ons	

– Performs	op=miza=on	(like:	pipelining	map()’s)	

•  Task	are	bundled	up	to	be	sent	to	cluster	
– Cluster	has	mul=ple	task	executors	

Big	Data	Programming	 4	CS	378	-	Fall	2016	



Distribu=ng	a	Spark	Applica=on	

•  Scheduling	individual	tasks	
– Executors	register	with	driver	
– Tasks	scheduled	based	on	data	loca=on	
– Cached	data	is	tracked	(for	future	task	scheduling)	

•  Driver	exposes	data	on	task	status	

Big	Data	Programming	 5	CS	378	-	Fall	2016	



Distribu=ng	a	Spark	Applica=on	

•  With	Hadoop	the	JAR	was	sent	to	workers	
– Spark	also	needs	to	get	the	code	to	workers	

•  Hadoop	has	two	tasks:	map,	reduce	
–  Instan=a=on	takes	place	on	the	workers	

•  Spark	sends	object	instances	to	workers	
–  Individual	tasks	defined	in	your	Spark	code	
– Objects	are	serialized	(we	use	Java	serializa=on)	

Big	Data	Programming	 6	CS	378	-	Fall	2016	



Closures	

•  Func=ons	as	first	class	objects	
– Can	be	passed	to	a	func=on	as	an	argument	
– Can	be	returned	from	a	func=on	
– Can	be	assigned	to	variables	

•  Closures	contain	free	variables	that	are	bound	
in	the	lexical	environment/scope	

Big	Data	Programming	 7	CS	378	-	Fall	2016	



Closures	

•  In	Scala,	func=ons	as	a	type	are	built-in	

•  In	Java,	closures	are	anonymous	inner	classes	
– Define	an	object	that	implements	an	interface	
–  Interface	requires	implementa=on	of	an	abstract	
method	

–  In	Spark	API,	that	method	is	call() 

Big	Data	Programming	 8	CS	378	-	Fall	2016	



Closures	

•  Our	Java	func=ons	are:	
–  Instan=ated	
– Sent	off	to	the	worker	tasks	(via	serializa=on)	
– Each	task	gets	its	own	copy	(no	communica=on)	

•  Non-local	references	will	cause	containing	
object	to	be	serialized	as	well.	
– Variable	value	types	must	be	serializable	

Big	Data	Programming	 9	CS	378	-	Fall	2016	



Closures	–	Issues	in	Java	

•  A	func=on	references	a	method	in	an	
enclosing	scope	
– Method	itself	cannot	be	serialized	
– The	en=re	containing	class	must	be	serialized	

•  Issues	
– This	class	is	not	serializable	
– The	associated	data	might	be	large	

Big	Data	Programming	 10	CS	378	-	Fall	2016	



Persistence	

•  Recall	that	RDDs	are	recomputed	as	needed	
– An	ac=on	ini=ates	evalua=on	
– Addi=onal	ac=on	results	in	another	evalua=on	

•  An	RDD	can	be	persisted	for	efficiency	
•  Making	an	RDD	persistent:	
– cache() 
– persist(StorageLevel level) 

Big	Data	Programming	 11	CS	378	-	Fall	2016	



Persistence	Op=ons	
From:		hgp://training.databricks.com/workshop/itas_workshop.pdf	

Big	Data	Programming	 12	CS	378	-	Fall	2016	



Par==oning	

•  Prudent	par==oning	can	greatly	reduce	the	
amount	of	communica=on	(shuffle)	

•  If	an	RDD	is	scanned	only	once,	no	need	
•  If	an	RDD	is	reused	mul=ple	=mes	in	key-
oriented	opera=ons	
– Par==oning	can	improve	performance	significantly	

Big	Data	Programming	 13	CS	378	-	Fall	2016	



Par==oning	

•  Par==oning	on	pair	RDDs	(key,	value)	

•  Consider	an	RDD	containing	user	sessions	
– All	users	over	some	=me	period	(day	or	week)	
– We	want	to	merge	in	the	last	hour	of	events	

•  We’ll	be	joining	sessions	and	events	by	userID	

Big	Data	Programming	 14	CS	378	-	Fall	2016	



Par==oning	
Figure	4-4,	from	Learning	Spark	

Big	Data	Programming	 15	CS	378	-	Fall	2016	



Par==oning	
Figure	4-5,	from	Learning	Spark	

Big	Data	Programming	 16	CS	378	-	Fall	2016	



Par==oning	

•  Consider	an	RDD	containing	user	sessions	
– All	users	over	some	=me	period	(day	or	week)	
– We	want	to	merge	events,	mul=ple	=mes	

•  To	set	up	for	this:	
– Create	the	session	RDD	
– Par==on	(call	partitionBy(),	a	transforma=on)	
– Persist	

Big	Data	Programming	 17	CS	378	-	Fall	2016	



Assignment	11	

•  Assignment	11	
– Create	user	sessions	
– Order	events	by	=mestamp	
– Order	sessions	by	user	ID,	referring	domain	
– Par==on	sessions	by	referring	domain	
– Sample	SHOWER	sessions	(1	in	10)	

Big	Data	Programming	 18	CS	378	-	Fall	2016	


