
CS	378	–	Big	Data	Programming	

Lecture	4	
Summariza9on	Pa:erns	

CS	378	-	Fall	2016	 Big	Data	Programming	 1	



Review	

•  Assignment	1	–	Issues	
–  AWS	Error:	Moved	Permamently	Service:	Amazon	S3	

•  Make	regions	for	S3	bucket	and	EMR	cluster	the	same	

•  Other	ques9ons?	

CS	378	-	Fall	2016	 Big	Data	Programming	 2	



Simple	Debugging	

•  Counters	
–  controller	
–  syslog	

•  Custom	counters	
–  context.getCounter(group, counter).increment(1L); 
–  group and counter are	strings	

CS	378	-	Fall	2016	 Big	Data	Programming	 3	



Summariza9on	

•  Coun9ng	things	is	a	common	map-reduce	task	
– Word	count	was	a	simple	example	
– Min,	max,	mean,	median,	variance,	…	

•  By	making	the	“things”	being	counted	keys,	
MapReduce	is	doing	much	of	the	work	for	us	
–  Hadoop	sorts	and	groups	data	by	key	

•  In	WordCount,	the	words	counted	are	the	keys	

CS	378	-	Fall	2016	 Big	Data	Programming	 4	



Summariza9on	
Figure	2.4,		Map	Reduce	Design	Pa:erns	(edited)	

group	C	
group	A	

CS	378	-	Fall	2016	 Big	Data	Programming	 5	



Summariza9on	

•  Simple	and	useful	pa:ern	
•  Mappers	do	local	counts,	reducers	sum	up	
•  Combiners	are	very	useful	here	
•  Usually	collec9ng	mul9ple	sta9s9cs	

CS	378	-	Fall	2016	 Big	Data	Programming	 6	



Assignment	2	–	Word	Sta9s9cs	

•  Input:	
–  Each	input	record/value	is	a	paragraph	of	a	document	

•  Output	(similar	to	word	count,	but	more	numbers):	
–  For	each	word	in	the	document,	output:	
–  Number	of	paragraphs	containing	the	word	
– Mean	

•  In	paragraphs	where	the	word	appears,	what	is	the	average	
number	of	9mes	it	appears	

–  Variance	
•  In	paragraphs	where	the	word	appears,	what	is	the	variance	

CS	378	-	Fall	2016	 Big	Data	Programming	 7	



Word	Sta9s9cs	

•  What	do	we	need	to	calculate	mean,	variance?	

•  Mean	is	straighdorward	
–  Total	number	of	occurrences	of	the	word	
–  Number	of	paragraphs	containing	the	word	

•  Variance	is	less	obvious	
– We	can	get	there	with	a	li:le	algebra	
–  “Mean	of	square	minus	square	of	mean”	

CS	378	-	Fall	2016	 Big	Data	Programming	 8	



Designing	a	Map-Reduce	App	

•  We	need	to	answer	these	ques9ons:	
– What	are	the	map	input	key	and	value	types?	
– What	does	the	mapper	do?	
– What	are	the	map	output	key	and	value	types?	
–  Can	we	use	a	combiner?	
– What	does	the	reducer	do?	
– What	are	the	reduce	output	key	and	value	types?	

•  And:	What	are	the	file	formats?	
–  For	now	we	are	using	text	files,	we’ll	expand	our	op9ons	
later	

CS	378	-	Fall	2016	 Big	Data	Programming	 9	



Mul9ple	Output	Values	

•  If	we	are	to	output	mul9ple	values	for	each	key	
–  How	do	we	do	that?	
– WordCount	output	a	single	number	as	the	value	

•  Remember,	our	object	containing	the	values	needs	
to	implement	the	Writable	interface	

•  We	could	use	Text 
–  Value	is	a	string	of	comma	separated	values	
–  Have	to	convert	our	counts	to	strings,	build	the	full	string	
–  Have	to	parse	the	string	on	input	(not	hard)	

CS	378	-	Fall	2016	 Big	Data	Programming	 10	



Mul9ple	Output	Values	

•  Suppose	we	wanted	to	implement	a	custom	class	
•  Call	it:	WordStatisticsWritable 
–  How	would	we	implement	this	class?	
–  Needs	to	implement	the	Writable	interface	
–  write() method:	

•  Output	the	values	needed	for	mean,	variance	

–  readFields() method:	
•  Read	the	values	needed	for	mean,	variance	

CS	378	-	Fall	2016	 Big	Data	Programming	 11	



Custom	Writable	

•  Approach	1	for	WordStatisticsWritable:	
–  Include	instance	variables	of	type	LongWritable	and	
DoubleWritable 

•  Required	methods:	
–  write(DataOutput out) 
–  Writes	the	instance	variable	values	(call	write()) 

–  readFields(DataInput in) 
–  Reads	the	instance	variable	values	
–  Create	instances,	call	readFields() 

CS	378	-	Fall	2016	 Big	Data	Programming	 12	



Mul9ple	Output	Values	

•  Approach	2:		ArrayWritable 
–  Class	provided	by	Hadoop	

•  In	addi9on	to	write() and	readFields():	
–  Writable[] get() 
–  Class getValueClass() 
–  void setWritable(Writable[] values) 
–  Object toArray() 
–  String[] toStrings() 

CS	378	-	Fall	2016	 Big	Data	Programming	 13	



Custom	Writable	

•  Approach	3	for	WordStatisticsWritable:	
–  Use	primi9ve	Java	types	(long,	double)	

•  Required	methods:	
–  write(DataOutput out) 
–  Write	primi9ve	values	to	DataOutput	instance	

•  writeLong(), writeDouble() 

–  readFields(DataInput in) 
–  Read	primi9ve	values	from	DataInput	instance	

•  readLong(), readDouble() 

CS	378	-	Fall	2016	 Big	Data	Programming	 14	



Custom	Writable	

•  What	other	methods	might	we	want/need	for	
WordStatisticsWritable?	

	
•  For	output	to	text	file:	
–  toString() 

•  For	reading	in	from	text:	
–  parse(String input) 

•  For	MRUnit	tests:	
–  equals() 

CS	378	-	Fall	2016	 Big	Data	Programming	 15	



Word	Sta9s9cs	

•  Mapper	
– What	are	the	input	key/value	types?	
– What	are	the	output	key/value	types?	

•  Reducer	will	calculate	mean,	variance	
– What	are	the	input	key/value	types?	
– Make	the	output	key/value	types	be:	

•  Text,	WordStatisticsWritable 

CS	378	-	Fall	2016	 Big	Data	Programming	 16	



Word	Sta9s9cs	

•  Combiner	will	be	useful	for	compu9ng	word	sta9s9cs	

•  Why?	

•  Can	we	reuse	the	reducer	class	for	the	combiner?	
– What	are	the	combiner	input	key/value	types?	
– What	are	the	combiner	output	key/input	types?	

CS	378	-	Fall	2016	 Big	Data	Programming	 17	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	Defini9ve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	-	Fall	2016	 Big	Data	Programming	 3.18	


