Mathematical Background

Functions

- A function $f: A \rightarrow B$ is injective if f is one-to-one, i.e. $f(x)=f(y)$ implies $x=y$.
- A function $f: A \rightarrow B$ is surjective if f is onto, i.e. for all $y \in B$ there exists $x \in A$ such that $f(x)=y$.
- A function f is bijective if f is both injective and surjective.

Probability

- Probability and events:

1. A probability distribution on a finite set S is an assignment of probabilities $\operatorname{Pr}[x]$ to each element $x \in S$, where $\sum_{x \in S} \operatorname{Pr}[x]=$ 1. The uniform distribution is the probability distribution where $\operatorname{Pr}[x]=1 /|S|$ for all $x \in S$.
2. An event T is a subset of S. We have $\operatorname{Pr}[T]=\sum_{x \in T} \operatorname{Pr}[x]$, but often this probability can be computed more directly.
3. For any events A, B,

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

4. Union bound: for any events $A_{1}, A_{2}, \ldots A_{n}$,

$$
\operatorname{Pr}\left[A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right]+\ldots+\operatorname{Pr}\left[A_{n}\right]
$$

5. For independent events $A_{1}, A_{2}, \ldots A_{n}$,

$$
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right] \cdot \ldots \cdot \operatorname{Pr}\left[A_{n}\right] .
$$

- Conditional probability:

1. The conditional probability of A given B, denoted $\operatorname{Pr}[A \mid B]$, is the probability that A occurs given that B occurs. It satisfies

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B] .
$$

2. Bayes' Law:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]} .
$$

- Random variables:

1. A random variable is a function on a probability space.
2. Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if for all x_{1}, \ldots, x_{n}, we have

$$
\operatorname{Pr}\left[\left(X_{1}=x_{1}\right) \wedge\left(X_{2}=x_{2}\right) \wedge \ldots \wedge\left(X_{n}=x_{n}\right)\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[X_{i}=x_{i}\right]
$$

- Expectation:

1. The expectation of a random variable X is

$$
E[X]=\sum_{x \in S} x \cdot \operatorname{Pr}[X=x] .
$$

2. Expectation is linear: for constants a, b and random variables X, Y we have

$$
E[a X+b Y]=a E[X]+b E[Y] .
$$

Number Theory

- \mathbb{Z} denotes the set of integers, and \mathbb{Z}^{+}denotes the set of positive integers.
- For $d \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$:

1. $d \mid a$ means there exists an integer c such that $a=d c$.
2. $d \mid a$ and $d \mid b$ implies $d \mid a+b$ and $d \mid a-b$.
3. $d \mid a$ implies $d \mid a b$.
4. The common divisors of a and b are all positive integers that divide both a and $b . \operatorname{gcd}(a, b)$ is the greatest (largest) common divisor of a and b.

- For $a, b, c, d, m \in \mathbb{Z}, m \geq 2$:

1. $a \equiv b \bmod m$ means $m \mid a-b$.
2. $a \bmod m$ is the unique $b \in\{0,1, \ldots, m-1\}$ such that $a \equiv b$ $\bmod m$.
3. $a \equiv c \bmod m$ and $b \equiv d \bmod m$ imply both

$$
\begin{aligned}
a+b & \equiv c+d \quad \bmod m \\
a \cdot b & \equiv c \cdot d \quad \bmod m
\end{aligned}
$$

Therefore $((a \bmod m)(b \bmod m)) \bmod m=(a b) \bmod m$.

- For $m \in \mathbb{Z}, m \geq 2$:

1. $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ where the operations + , - , and \cdot are performed $\bmod m$.
2. $\mathbb{Z}_{m}^{*}=\left\{x \in \mathbb{Z}_{m}: \operatorname{gcd}(x, m)=1\right\}$.

- For $a, b, c, m \in \mathbb{Z}, m \geq 2$:

1. If $\operatorname{gcd}(a, m)=1$, then $a b \equiv a c \bmod m$ implies $b \equiv c \bmod m$.
2. If $\operatorname{gcd}(a, m)=1$, then there is a unique solution $x \in \mathbb{Z}_{m}^{*}$ to $a x \equiv b$ $\bmod m$.
3. For $a \in \mathbb{Z}_{m}^{*}$, the multiplicative inverse of a, denoted a^{-1}, is the unique element in \mathbb{Z}_{m}^{*} such that $a \cdot a^{-1} \equiv 1 \bmod m$. Division b / a in \mathbb{Z}_{m} means $b \cdot a^{-1}$.
