Subsection 5.4.1 Boolean Identities
| Double Negation | \(p\) \(\equiv \neg(\neg p) \) |
| Equivalence: | \((p \equiv q) \equiv (p \rightarrow q ) ∧ ( q \rightarrow p )\) |
| Idempotence: | \((p ∧ p) \equiv p \) |
| \((p \vee p) \equiv p \) | |
| DeMorgan1: | \((¬(p ∧ q)) \equiv (¬p ∨ ¬q)\) |
| DeMorgan2: | \(\neg (p \vee q) \equiv (\neg p \wedge \neg q)\) |
| Commutativity of or | \((p ∨ q) \equiv (q ∨ p)\) |
| Commutativity of and | \((p ∧ q) \equiv (q ∧ p)\) |
| Associativity of or | \((p ∨ (q ∨ r)) \equiv ((p ∨ q) ∨ r)\) |
| Associativity of and | \((p ∧ (q ∧ r)) \equiv ((p ∧ q) ∧ r)\) |
| Distributivity of and over or | \((p ∧ (q ∨ r)) \equiv ((p ∧ q) ∨ (p ∧ r))\) |
| Distributivity of or over and | \((p ∨ (q ∧ r)) \equiv ((p ∨ q) ∧ (p ∨ r))\) |
| Conditional Disjunction | \((p \rightarrow q) \equiv (¬p ∨ q)\) |
| Contrapositive | \((p \rightarrow q) \equiv (¬q \rightarrow ¬p)\) |
| Modus Ponens | From \(p and p \rightarrow q\) | infer \(q\) |
| Modus Tollens | From \(p \rightarrow q and \neg q\) | infer \(\neg p \cdots\) |
| Disjunctive Syllogism | From \(p ∨ q and ¬q\) | infer \(p \cdots \) |
| Simplification | From \(p ∧ q \) | infer \(p \cdots \) |
| Addition | From \(p\) | infer \(p ∨ q \cdots \) |
| Conjunction | From p and q | infer \(p ∧ q\) |
| Hypothetical Syllogism | From \(p \rightarrow q and q \rightarrow r \) | infer \(p \rightarrow r \) |
| Contradictory Premises | From \(p and ¬p \) | infer \(q\) |
| Resolution | From p ∨ q and ¬p ∨ r | infer q ∨ \(r \cdots \) |
| Conditionalization: | Assume premises A. | |
| Then, if (A ∧ p) entails q | infer \(p \rightarrow q\) |
| Law of the Excluded Middle: | \(p ∨ ¬p\) |
| Quantifier Exchange A: | \(\equiv ¬(∃x (P(x))\) |
| Quantifier Exchange B: | \(\equiv ¬(∃x (P(x))\) |
| Universal Instantiation: | From \(∀x (P(x))\) | infer \(P(c/x)\) |
| Universal Generalization: | From \(P(c/x)\) | infer \(∀x (P(x)) \) |
| Existential Instantiation: | From \(∃x (P(x))\) | infer \(P(c*/x)\) |
| Existential Generalization: | From \(P(c/x)\) | infer \(∃x (P(x))\) |
