Subsection 5.4.1 Boolean Identities
Double Negation | \(p\) \(\equiv \neg(\neg p) \) |
Equivalence: | \((p \equiv q) \equiv (p \rightarrow q ) ∧ ( q \rightarrow p )\) |
Idempotence: | \((p ∧ p) \equiv p \) |
\((p \vee p) \equiv p \) | |
DeMorgan1: | \((¬(p ∧ q)) \equiv (¬p ∨ ¬q)\) |
DeMorgan2: | \(\neg (p \vee q) \equiv (\neg p \wedge \neg q)\) |
Commutativity of or | \((p ∨ q) \equiv (q ∨ p)\) |
Commutativity of and | \((p ∧ q) \equiv (q ∧ p)\) |
Associativity of or | \((p ∨ (q ∨ r)) \equiv ((p ∨ q) ∨ r)\) |
Associativity of and | \((p ∧ (q ∧ r)) \equiv ((p ∧ q) ∧ r)\) |
Distributivity of and over or | \((p ∧ (q ∨ r)) \equiv ((p ∧ q) ∨ (p ∧ r))\) |
Distributivity of or over and | \((p ∨ (q ∧ r)) \equiv ((p ∨ q) ∧ (p ∨ r))\) |
Conditional Disjunction | \((p \rightarrow q) \equiv (¬p ∨ q)\) |
Contrapositive | \((p \rightarrow q) \equiv (¬q \rightarrow ¬p)\) |
Modus Ponens | From \(p and p \rightarrow q\) | infer \(q\) |
Modus Tollens | From \(p \rightarrow q and \neg q\) | infer \(\neg p \cdots\) |
Disjunctive Syllogism | From \(p ∨ q and ¬q\) | infer \(p \cdots \) |
Simplification | From \(p ∧ q \) | infer \(p \cdots \) |
Addition | From \(p\) | infer \(p ∨ q \cdots \) |
Conjunction | From p and q | infer \(p ∧ q\) |
Hypothetical Syllogism | From \(p \rightarrow q and q \rightarrow r \) | infer \(p \rightarrow r \) |
Contradictory Premises | From \(p and ¬p \) | infer \(q\) |
Resolution | From p ∨ q and ¬p ∨ r | infer q ∨ \(r \cdots \) |
Conditionalization: | Assume premises A. | |
Then, if (A ∧ p) entails q | infer \(p \rightarrow q\) |
Law of the Excluded Middle: | \(p ∨ ¬p\) |
Quantifier Exchange A: | \(\equiv ¬(∃x (P(x))\) |
Quantifier Exchange B: | \(\equiv ¬(∃x (P(x))\) |
Universal Instantiation: | From \(∀x (P(x))\) | infer \(P(c/x)\) |
Universal Generalization: | From \(P(c/x)\) | infer \(∀x (P(x)) \) |
Existential Instantiation: | From \(∃x (P(x))\) | infer \(P(c*/x)\) |
Existential Generalization: | From \(P(c/x)\) | infer \(∃x (P(x))\) |