
CS 388H: Cryptography Fall 2021

Homework 3: Symmetric and Public-Key Cryptography

Due: October 28, 2021 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa21/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Goldreich-Levin and List Decoding [28 points]. Fix any x ∈ Zn
2 and let fx : Zn

2 → Z2 be a
function where

Pr[r
R←−Zn

2 : fx (r) = 〈x,r 〉] ≥ p. (1)

In lecture, we showed that when p = 3/4+ε for any constant ε> 0, there exists an efficient algorithm A fx

that makes O(n logn) queries to fx and outputs x with probability at least 1/2. We often refer to A as a
“unique decoder.” In this problem, we consider the setting where p = 1/2+ε for a constant ε> 0.

(a) Show that when p = 1/2+ε, the point x may not be uniquely determined. In particular, show that
there exists x 6= y ∈Zn

2 and a single function f : Zn
2 →Z2 such that

Pr[r
R←−Zn

2 : f (r) = 〈x,r 〉] ≥ p

Pr[r
R←−Zn

2 : f (r) = 〈y,r 〉] ≥ p,

for some p ≥ 1/2+ε where ε> 0. Hint: Consider x, y ∈Zn
2 that differ on a single index.

This shows that given a function fx satisfying Eq. (1) with p > 1/2+ε, any algorithm A that is constrained
to outputting a single point cannot recover x with probability better than 1/2. Instead, we relax our
requirement to allow A to output a list L ⊂ Zn

2 of possible x’s, and we say that A succeeds if x ∈ L and
|L| = poly(n). We refer to A as a “list decoder.”

(b) Suppose that in addition to fx , you have access to an oracle Ox . When invoked, Ox samples r
R←−Zn

2
and outputs (r,〈x,r 〉). Oracle Ox outputs a fresh sample on every invocation. Show how to construct
an efficient algorithm B fx ,Ox where for all y ∈Zn

2 ,

Pr[B fx ,Ox (y) = 〈x, y〉] ≥ 1−1/(10n).

Algorithm B fx ,Ox can make at most k =O(logn) queries to Ox and fx . Note that x is uniquely defined
by the oracle Ox .

https://www.cs.utexas.edu/~dwu4/courses/fa21/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/sp21/info.html

(c) Show how to use algorithm B to construct an efficient list decoder A fx that makes poly(n) queries to
fx and outputs a list L ⊂Zn

2 of size poly(n) such that x ∈ L with probability at least 9/10. Note that
A does not have access to the oracle Ox . Hint: Let k = c logn be an upper bound on the number of
queries B makes to Ox where c > 0 is a constant. Observe that 2k = poly(n).

(d) The full Goldreich-Levin theorem gives an efficient algorithm for list decoding for any p = 1/2+ε
whenever 1/ε= poly(n). Briefly explain what goes wrong in our above approach when 1/ε=ω(1)
(i.e., the distinguishing advantage is sub-constant).

Remark: While the specific approach we took in this problem does not generalize to the setting
where p = 1/2+1/poly(n), a slight variant of this basic approach does. We can then use a similar
averaging argument from lecture to translate this statement about list decoding back to the setting of
one-way permutations and the Goldreich-Levin hard-core bit.

Problem 2: DDH in Composite-Order Groups [12 points]. Let k > 1 be a constant, and let G be a cyclic
group of order kq where gcd(k, q) = 1. Let g be a generator of G. Show that the DDH assumption does not
hold inG. (Specifically, for this setting, the DDH assumption asserts that the distributions of (g , g a , g b , g ab)

and (g , g a , g b , g r) where a,b,r
R←−Zkq) are indistinguishable to any efficient adversary. You can assume

that k and q are known to the adversary. Hint: If x = y mod kq , then x = y mod k.

Remark: This shows that the DDH assumption does not hold in Z∗
p (for prime p) when p = kq +1. In fact,

the DDH assumption does not hold in Z∗
p for any prime p (there is an efficient distinguisher based on

Legendre symbols). However, assumptions such as CDH or discrete log still plausibly hold over Z∗
p .

Problem 3: Hash Functions from Discrete Log [15 points]. Let G be a group of prime order p with

generator g . Sample h1, . . . ,hn
R←−G and define the hash function Hh1,...,hn : Zn

p →G as follows:

Hh1,...,hn (x1, . . . , xn) := hx1
1 hx2

2 · · ·hxn
n ∈G.

(a) Show that Hh1,...,hn is collision resistant under the discrete log assumption in G. Specifically, in the

(keyed) collision-resistant hashing security game, the adversary is first given h1, . . . ,hn
R←−Zp and it

succeeds if it outputs (x1, . . . , xn) 6= (x ′
1, . . . , x ′

n) such that Hh1,...,hn (x1, . . . , xn) = Hh1,...,hn (x ′
1, . . . , x ′

n). In

the discrete log security game, the adversary is given h
R←−G, and it wins if it outputs x ∈Zp such that

h = g x . Hint: Consider a reduction algorithm that starts by guessing the index i∗ ∈ [n] (uniformly
at random) where xi∗ 6= x ′

i∗ . Show that your reduction algorithm succeeds whenever the guess is
correct. Remember to compute the advantage of your reduction algorithm (for breaking the discrete
log assumption).

(b) Show that the function Hh1,...,hn has a trapdoor that can be used to sample pre-images. Specifically,
show that if someone knew the discrete logs of h1, . . . ,hn (i.e., zi ∈Zp where hi = g zi for each i ∈ [n]),
then for any t ∈Zp , they can find a pre-image (x1, . . . , xn) ∈Zn

p such that Hh1,...,hn (x1, . . . , xn) = g t .

Problem 4: Encrypted Group Chat [20 points]. Suppose a group of n people (denoted P1, . . . ,Pn) want
to set up a shared key for an encrypted group chat. At the end of the group key-exchange protocol,
everyone within the group should know the key, but an eavesdropper on the network should not. We will
use the following variant of Diffie-Hellman over a group G of prime order p and generator g :

• At the beginning of the protocol, P1 chooses s
R←−Zp . We will view P1 as the group administrator

that all of the other parties know.

• Each of the other parties Pi (2 ≤ i ≤ n) samples ri
R←−Zp and sends xi ← g ri to the group administra-

tor P1. The administrator P1 replies to Pi with xs
i .

• The group key is then defined to be k ← H(g s), where H : G→ {0,1}λ is a hash function.

Both the group description (G, p, g) and the hash function H are public and known to everyone (both the
protocol participants and the eavesdropper).

(a) Show that both the group administrator P1 and each of the parties Pi (2 ≤ i ≤ n) are able to efficiently
compute the group key.

(b) We say that the group key-exchange protocol is secure against eavesdroppers if no efficient adversary
who sees the transcript of messages sent by the honest parties P1, . . . ,Pn is able to distinguish the
group key k from a uniform random string over {0,1}λ, except perhaps with negligible probability.
If we model H as an “ideal hash function” (i.e., random oracle), it suffices to argue that the shared
Diffie-Hellman secret g s is unguessable: namely, for all efficient adversaries A,

Pr[A(x2, xs
2, . . . , xn , xs

n) = g s] = negl(λ), (2)

where xi = g ri and r2, . . . ,rn , s
R←− Zp . This means that an eavesdropper who only observes the

messages sent by the honest parties cannot guess g s , and correspondingly, the shared key H(g s) is
uniformly random and unknown to the adversary.

Show that under the CDH assumption in G, the shared Diffie-Hellman secret g s in the group key-
exchange protocol above is unguessable (i.e., Eq. (2) holds for all efficient adversaries A). As usual,
you should consider the contrapositive: show that if there exists an efficient adversary A that can
predict g s from the above challenge tuple (x2, xs

2, . . . , xn , xs
n), then there exists an efficient algorithm

B that breaks CDH in G. Hint: Your algorithm B may need to invoke A more than once. Remember
to compute the advantage of the adversary you construct.

Problem 5: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

