


```
56-bit keys was a compromise between 40-bit keys (NIST/NSA) and 64-bit keys (cryptographers-notably Hellman)
    by turned out to be insufficient
          - 1997: DES challenge solved in 96 days (massive distributed effort)
          - 1998: with dedicated hardware, DES can be broken in just 56 hours
                                                                              -> not secure enough!
          - 2007: using off-the-shelf FPGAs (120), can break DES in just 12.8 days
                                                                              - anyone can now break DE5!
    L> 2-DES: apply DES twice (keys now 112-bits)
           -> meet-in-the-middle attack gives no advantage (though space usage is high)
    > 3-DES: apply DES three times [3DE3((k,,k,k,),x) := DES(k3, DES'(k2, DES(k,,x)))]
           108-bit keys - Standardized in 1998 after brute force attacks on DES shown to be feasible
 AES (2002 - most common block cipher in use today):
   - 3DES is slow (3x slower than DES)
   - 64-bit block size not ideal (recall that block size determines adversary's advantage when block cipher used for encryption)
 AES block cipher has 128-bit blocks (and 128-bit keys) (but block size always 2128)
    → follows another classic design paradigm: iterated Even-Mansour (also called alternating key ciphers)
 Even-Mansour block cipher: keys (k,,k2), input x:
            Theorem (Even-Mansour): If To is modeled as a random permutation, then the Even-Mansour block cipter is secure (i.e., it is
                       a secure PRP).
The AES block cipher can be viewed as an iterated Even-Mansour cipher:
                                                                                               key-size_
                      AES-128: 10 rounds
                                                                                               AES-192: 12 rounds
                                                                                            J AES-256: 14 rounds
                                                                                              (block-size all 128 bits)
Permutations TAES and TAES are fixed permutations and cannot be ideal permutations
                                                                         > connot write down random permutation over
   > Cannot appeal to security of Even-Mansour for security
          L> But still provides evidence that this design structery is viable (similar to DES and Luby-Rachoff)
```

0 = 1			
HES n	ound permutation	on: composed of three invertible operations that each operate on a 128-bit block	
	م، م، می م م، می مه مه	SubBytes: apply a fixed permutation S: {0,138 -> {0,138 to each cell	
	a8 a9 a10 a1		
	a2 a3 a4 a		
		_ SMITHOUS CYCLE SMIT THE 1955 OF THE TIME	
	128 bits arrange	- 1st row unchanged (Fz)	
	in 4-by-4 grid	of elements are polynomials over GFG	7)
	bytes (80,138)	DALumani'al o'P t o'T . L	01e (3+x+1
		7	
		Mix Columns: the matrix is interpreted as a 4-by-4 matrix over GF(28) and multiplie	1.3
		a fixed invertible motrix (also carefully chosen and hard-coded into the s	was
Operno	. Every magazi	ution is invertible, so composition is also invertible	
<u></u>			
		5: SubBytes; ShiftRows; MixColumns : SubBytes; ShiftRows No MixColumns for the last round I done so AES decryption circuit be	He-]
	WES		
		L resembles AES encryption	3
Security	of AES: B	Brute-force attack: 2 128	
	B	best-known key recovery attack: 2126.1 time — only 4x better than brute force!	
What a	loes 2 ¹²⁸ - time	look like?	
	- Suppose we	can try 240 keys a second.	
	الا	econds to break 1 AES key $\sim 10^{19}$ years (710 million times larger than age of the universe!)	
		uting power on Earth (circa 2015)	
	L> esti	imated to be ~270 operations/second (currently, bitcoin mining computes ~ 26 hashes/second)	
	Let's say w	se can do 2 operations/second	
		11 require 2 seconds to break AES ~ 9 million years of compute	
If we	move to 256	6-bit levs hest brute force attack takes 2 ^{254,2} time (on AES-256)	
		e.g., quantum com	puters
In we	11-implemented s	systems, the cryptography is not the weak point — breaking the crypto requires new <u>algorithmic</u> technique	
		els/bad implementations can compromise cripto	