
CS 346: Cryptography Fall 2023

Homework 3: Password Manager

Due: October 18, 2023 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. In this assignment, you will be implementing the back-end for a password manager system
using the Python cryptography library. Please carefully read the entire specification and work out a
design before starting your implementation. Your submission will be primarily evaluated for security. A
functional, but insecure, implementation will receive very little to no credit. The starting implementation
we provide satisfies all of the functionality requirements, but none of the security requirements.

Collaboration Policy. For this assignment, you may work in groups of up to two. If you work in a group
of two, both of you will receive the same grade on the assignment. Only one person in the group should
submit the assignment on Gradescope and the submitter is responsible for listing all group members
in Gradescope. You may discuss your general high-level strategy with other students, but you may not
share any written documents or code (this includes pseudocode and concrete implementation details)
with students outside your group. You are not allowed to look at the code of students outside your group.
Please refer to the course website for the full description of the collaboration policy.

Acknowledgments. This homework assignment is adapted from a similar assignment from Stanford’s
CS 255 course by Prof. Dan Boneh.

1 Overview

In many existing software systems, the primary weakness is the user’s password. For security, it is
important that users rely on strong passwords or passphrases to secure their accounts. However, strong
passwords can be long and difficult to remember. This problem is further compounded by the fact that
users should use different passwords for each service.

One way for users to manage their passwords is with a password manager. The password manager
maintains a mapping between services and login credentials and is protected by a single “master pass-
word.” With a password manager, users only have to remember the single master password. The burden,
however, is now on the password manager to properly protect the user’s credentials.

In this assignment, you will be writing the back-end for a secure password manager. As part of this
project, you will be making use of a number of symmetric cryptographic primitives that we have discussed
so far. Since it is rarely advisable to implement these low-level cryptographic primitives, you will be using
the Python cryptography library in your implementation.

2 Secure Password Manager

The password manager will internally maintain a key-value store that maps domains (keys) to passwords
(values). For example, the (plaintext) contents of the key-value store might look like the following:
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Domain (Key) Password (Value)

example.com 123456
facebook.com gj3eXv6Qkf3ZHHQBNXrCSAqj
utexas.edu ezTR34mehDz8G3yhk2yNG9rd

In this project, you will implement the API for a back-end implementation of a password manager.
The API will support serialization and deserialization methods for loading and writing the contents of
the password manager to disk, as well as methods for adding, fetching, and removing entries from the
password manager. We impose the following security requirements on both the serialized as well as the
in-memory representation of the key-value store:1

• String encoding: Throughout this project, you may assume that all domain names and passwords
are ASCII strings.

• Domain encoding: We want to hide the domains in the password manager while still enabling
efficient look-ups. To support this, instead of using the domain x itself as the key in the key-value
store, you will use HMAC(k, x), where k is an HMAC key.

• Password storage: The passwords in the key-value store should be encrypted using an authenticated
encryption scheme. Since there can be a large number of entries in the password manager, each
password should be encrypted and stored separately. You should not encrypt the entire contents of
the key-value store as a single ciphertext (otherwise, you would have to decrypt the entirety of the
password manager for each lookup).

• Hiding password length: The password manager should not leak any information about the length
of the passwords. To make this feasible, you may assume that the maximum length of any password
is 64 bytes (i.e., 64 ASCII characters).

• Key derivation: The password manager itself is protected by a master password. When the user
initializes a password manager or loads the contents of the password manager from disk, they
must provide the master password. The master password should be used to derive a single 256-bit
(32 bytes) master key. If you need additional cryptographic keys, you should find a way to derive
them from the master key. In this assignment, you will use the password-based key-derivation
function (PBKDF2) with 2,000,000 iterations of SHA-256 to derive your master key:2

kdf = PBKDF2HMAC(algorithm = hashes.SHA256(), length = 32, salt = <YOUR SALT HERE>,
iterations = 2000000, backend = default_backend())

key = kdf.derive(bytes(password, ’ascii’))

The password manager is not allowed to include the master password (or any value that leaks
information about the master password in its serialized representation). For instance, including

1Ensuring that the in-memory representation of the key-value store is encrypted is a good precaution (as would storing
cryptographic keys in a protected segment or in a hardware security module). However, we emphasize that this is still not
sufficient for security against an adversary that has access to memory. For instance, standard features and library functions in
Python may leave data in memory that leak secrets—both on the call stack and in garbage-collected structures on the heap.
While this assignment provides a valuable proof-of-concept illustration of many important aspects of cryptographic systems, it
is still far from a complete picture, and you should not rely on the code you produce to be fully secure in all practical settings.

2At a high-level, PBKDF2 derives the key by applying SHA-256 to the (salted) password 2,000,000 times. Since we are using
SHA-256 as our underlying hash function and the block-size of SHA-256 is 256-bits, the output of PBKDF2 is also 256-bits.



a hash of the master password is not secure. Because PBKDF2 is designed to be a “slow” hash
function, you can call it at most once in your implementation.

• Password salting: When using PBKDF2 to derive your keys, you should always use a randomly-
generated salt.3 In this assignment, you should use a randomly-generated 128-bit salt (e.g., can be
obtained by calling os.urandom(16)). The salt does not have to be secret, and can be stored in the
clear in your serialized representation.

• No external sources of randomness: Since good sources of randomness are expensive and not
always available, you cannot use any external sources of randomness other than for generating
the salt for PBKDF2. This means that you cannot call methods like AESGCM.generate_key or
secrets.choice anywhere in your implementation. All cryptographic keys and sources of ran-
domness that you rely on should be (securely) derived from the master key output by PBKDF2.

• Generating new passwords: Your password manager must provide an interface for generating
random alphanumeric passwords. The generated passwords should be computationally indistin-
guishable from a random alphanumeric password of the prescribed length. The same restrictions
apply here: namely, you cannot use any external source of randomness to implement this feature.

• No secrets in code: You should not rely on any hard-coded secrets in your source code. You should
assume that the adversary has complete knowledge of your source code.

3 Threat Model

When designing any system with security goals, it is important to specify a threat model. Specifically, we
must define the power of the adversary, as well as the condition the adversary must satisfy in order to
be considered to have “broken” the system. We define security via the following game-based definition
(similar in flavor to notions like CPA security of PRF security):

The password manager plays the role of challenger and interacts with an adversary that is able to
make a sequence of adaptive queries (as governed by the API of the password manager). The challenger’s
response to these queries depends on a bit b ∈ {0,1} (as in the CPA security and PRF security games). In
this case, we allow the adversary to make the following queries:

1. Insertion query: The adversary specifies a triple 〈domain,password0,password1〉. The challenger
adds the domain-password pair 〈domain,passwordb〉 to the database.

2. Retrieve query: The adversary specifies a domain and the challenger replies to the adversary with
the associated password in the password manager.4

3. Remove query: The adversary specifies a key (domain) that the challenger must remove from the
password database.

3Using a random salt of sufficient length protects against common preprocessing attacks such as an offline dictionary attacks or
rainbow tables.

4This models the setting where the adversary is able to cause the client to attempt to authenticate to a malicious server (e.g.,
through phishing, control hijacking, etc.), and is thus able to learn the password associated with a particular (malicious) domain
in the client’s password manager.



4. Serialize query: The adversary requests the challenger to serialize the current contents of the
password manager. The adversary then provides the challenger a new string which the challenger
immediately deserializes and uses the result as the new state of the password manager. Note that if
the password manager ever ends up in an inconsistent state, then the challenger will respond to all
subsequent queries with a special symbol ⊥.

As in the PRF and CPA games, we say that the adversary wins the game if its probability of outputting 1
(for its guess of the bit b) differs by a non-negligible amount when b = 0 and when b = 1. Unlike the PRF
and CPA games, however, we need an additional restriction for our security definition here. In particular,
we will only allow adversaries whose queries are “admissible” in the following sense:

• Whenever the adversary makes a retrieve query on a domain d , its last insertion query adding
passwords for a domain d , must have the property that password0 = password1.

Observe that without this restriction, the adversary could trivially win the game. Namely, the adversary
can make an insertion query on a domain d with distinct passwords password0 and password1, and then
make a retrieve query for domain d to learn passwordb (and correspondingly, the challenger’s bit b).

This security definition captures the fact that even if the adversary is able to exert substantial control
over the contents of the password database—and even if it controls some malicious remote servers—it
still is unable to learn anything about the passwords in the database for any other servers (i.e., we have
semantic security for all domains d for which the adversary did not make a retrieve query).

For this project, you will not be required to give a formal proof that your system fulfills the strong
security definition we have just stated, but such a proof should indeed be possible. We note here that this
definition immediately precludes a number of attacks such as swap attacks and rollback attacks:

• Swap attack: In a swap attack, the adversary interchanges the values corresponding to different keys.
For instance, the adversary might switch the entries for www.google.com and www.evil.com. Then,
when the user (for whatever reason) tries to authenticate to www.evil.com, the user inadvertently
provides its credentials for www.google.com.

• Rollback attack: In a rollback attack, the adversary can replace a record with a previous version
of the record. For example, suppose the adversary was able to retrieve the key-value store shown
above. At some later time, the user changes their password for www.google.com to google_pwd,
which would update the value for www.google.com in the key-value store. In a rollback attack, the
adversary replaces this updated record with the previous record for www.google.com.

Observe first that authenticated encryption by itself does not protect against this attack. In your
implementation, you should compute a SHA-256 hash of the serialized contents of the password
manager. You can assume this hash value can be saved to a trusted storage medium (inaccessible
to the adversary) such as an external flash drive. Whenever you load the password manager from
disk, you should verify that the hash is valid. This way, you can be assured that the contents of the
key-value store have not been tampered with.

In this assignment, you must implement some mechanism to defend against swap attacks together with
the above method to defend against rollback attacks. Depending on your design, your defense against
rollback attacks might also protect against the swap attacks described earlier. However, you must still
implement an explicit defense against swap attacks. In other words, the defenses you develop must work
independently of one another. Even if a SHA-256 hash is not provided from trusted storage, your scheme
must be secure against an adversary that swaps two records.



4 API description

Here are descriptions of the functions you will need to implement. For each function, we also prescribe the
run-time your solution must achieve (as a function of the number of entries n in the password database).
We will assume that the input values (domain names and passwords) are of length O(1), and regard each
operation on a dictionary as a constant-time operation. Of course, if your solution is asymptotically more
efficient than what we prescribe, that is acceptable. The starter code we provide you contains a basic
insecure implementation that satisfies all of the functionality requirements.

4.1 PasswordManager.__init__(password, data = None, checksum = None)

• Inputs:

– password (string): master password (an ASCII string) for the password manager

– data (string): hex-encoded serialization of the password manager; defaults to None

– checksum (string): hex-encoded SHA-256 checksum of the password manager for rollback
protection; defaults to None

• Raises: ValueError if the provided data could not be deserialized properly (due to tampering,
incorrect password, or if provided, an incorrect checksum)

• Running time: O(n)

This is the constructor for the password manager. If data is not provided, then this method should
initialize an empty password manager with the provided password as the master password. Otherwise,
it should load the password manager from data. In addition, if the checksum is provided, the password
manager should additionally validate the contents of the password manager against the checksum. If
the provided data is malformed, the password is incorrect, or the checksum (if provided) is invalid, this
method must raise a ValueError.

4.2 PasswordManager.dump()

• Inputs: None

• Return: data (string) and checksum (string)

– data (string): hex-encoded representation of the password manager that can subsequently
be loaded to initialize the password manager (via PasswordManager.__init__(...))

– checksum (string): hex-encoded hash of the contents of the serialized representation

• Running time: O(n)

This method should create a hex-encoded serialization of the contents of the password manager, such
that it may be loaded back into memory via a subsequent call to PasswordManager.__init__(...). It
should additionally output a SHA-256 hash of the serialized contents (for rollback protection).



4.3 PasswordManager.get(domain)

• Inputs:

– domain (string): domain (an ASCII string) to fetch

• Return: password (string): password associated with domain and None if not present

• Running time: O(1)

If the requested domain is in the password manager, then this method should return the password
associated with the domain. If the requested domain is not in the password manager, then this method
should return None.

4.4 PasswordManager.set(domain, password)

• Inputs:

– domain (string): domain (an ASCII string) to add

– password(string): password (an ASCII string) associated with the domain to store in the
password manager

• Return: None

• Raises: ValueError if the provided password exceeds the maximum length (64 bytes)

• Running time: O(1)

This method should insert the domain together with its associated password into the password manager.
If the domain is already in the password manager, this method will update its value. Otherwise, it will
create a new entry. If password is more than 64 bytes, this method should abort with a ValueError.

4.5 PasswordManager.remove(domain)

• Inputs:

– domain (string): domain (an ASCII string) to remove

• Return: success (bool): whether the domain was found in the password manager or not

• Running time: O(1)

Removes the target domain from the password manager. If the requested domain is found, then this
method should remove it and return True. If the domain is not found, return False.



4.6 PasswordManager.generate_new(domain, desired_len)

• Inputs:

– domain (string): domain (an ASCII string) for which to generate a new password

– desired_len (string): length of desired password

• Return: password (string): the newly-generated password

• Raises: ValueError: if the desired length exceeds the maximum length (64 bytes) or if the domain
already exists in the password manager

• Running time: O(ℓ), where ℓ= desired_len

Generates a random alphanumeric password (i.e., every character is either a lowercase letter, an uppercase
letter, or a digit) of the desired length. Each invocation of this method should yield a password that is
(computationally) indistinguishable from a uniformly random password of the given length (i.e., running
generate_new for the same domain and target length should return two different passwords). This
requirement does not have to hold if the state of the password manager is reset or rolled back. The
newly-generated password is then added to the password manager (if there does not currently exist a
password associated with the requested domain). This method should raise a ValueError if the requested
domain already exists in the password manager or if the desired length exceeds the maximum password

length (64 bytes). Hint: If you sample x
R←− {

0, . . . ,2128 −1
}

and compute x mod 62, the result is sufficiently

close to the distribution of x
R←− {0, . . . ,61}.

5 Additional Hints, Notes, and Requirements

• The starter code (password_manager.py) contains a fully-functional password manager that il-
lustrates the basic functionality requirements. We include a basic testing script (main.py) that
exercises some of the basic functionalities of the password manager.5 Please note that this script
does not cover all of the properties we will test during grading, and in particular, does not cap-
ture the security requirements. You are encouraged to design additional test cases to evaluate the
correctness and security of your implementation.

• You cannot change the signatures of the methods we provide. If your implementation does not work
with our provided main.py script, then you will not receive any credit for the assignment. That said,
you are welcome to (and encouraged) to add additional helper methods in your implementation.

• Your design and implementation must satisfy the requirements from Section 2 as well as be provably
secure under our threat model in Section 3. While we do not require a formal security proof in your
submission, you should be prepared to provide one if requested.

• For serialization and deserialization of basic Python data structures (including dictionaries, lists,
strings, byte-arrays, etc.), you can use the pickle library:

– ser_data = pickle.dumps(data).hex() will output a hex-encoded serialization of data.

5The starter implementation was tested with Python 3.



– data = pickle.loads(bytes.fromhex(ser_data)) can be used to deserialize the data.

• To obtain a byte-array (needed for cryptographic methods) from an ASCII-encoded string, use
bytes(message, 'ascii'). To convert back from a byte-array to an ASCII-encoded string, use
message.decode('ascii').

• One way to convert integers into byte arrays is to use the to_bytes method. For example, if you
want an 8-byte array that represents the number n, you can write (n).to_bytes(8, 'little').

• For this assignment, you may only make the following assumptions (and nothing more):

– AES is a secure PRP.

– AES-GCM is an authenticated encryption with associated data (AEAD) scheme.

– HMAC (with SHA-256) is both a secure MAC and a secure PRF (on a variable-size domain).

– SHA-256 is a collision-resistant hash function.

– PBKDF2 (with SHA-256) is an ideal hash function (i.e., a “random oracle”); you can only
invoke PBKDF2 once on the master password and only to generate a single 256-bit key (see
Section 2).

You should only need to rely on these primitives in your implementation. While you are free to use
other algorithms that build upon these basic primitives (e.g., HKDF), you will be responsible for
figuring out how to use them in a way that achieves the required security properties. We will not
answer any questions about proper usage of any primitive that is not in the list above. Our reference
implementation only uses the primitives listed above.

• As stated in Section 2, the only source of external randomness you are allowed to use is for the
salt in PBKDF2. You can only call PBKDF2 once in your implementation, and you can only use
it to generate a 256-bit (32-byte) master key. If you need additional cryptographic keys, you must
securely derive them from the master key.

• Your implementation can only make use of standard Python modules and the cryptography library.

• Carefully think through your design before starting on your implementation. The number of lines of
code you need to write should be modest. As a point of reference, our reference solution is under
250 lines of Python code (including the 100 lines in the starter file):

diff -y --suppress-common-lines base/password_manager.py password_manager.py | wc -l
142

6 Short-Answer Questions

In addition to your implementation, please include short responses (e.g., 1-5 sentences) to the following
questions regarding your design and implementation. You do not need to give formal proofs, but you
should be precise and include important details in your responses.

1. Suppose an adversary is able to perform a swap attack (as described in Section 3). Show how such an
adversary can win the password manager security game. Note that you must say why the adversary
you construct is admissible for the password manager security game.

https://cryptography.io/en/latest/


2. Suppose an adversary is able to perform a rollback attack (as described in Section 3). Show how
such an adversary can win the password manager security game. As before, you should say why the
adversary you construct is admissible.

3. There are at least two methods in the provided API (other than the constructor) that (should) rely on
a source of randomness. Identify two of these methods and briefly state how your implementation
generates the randomness needed for these two methods.

4. Briefly describe your method for preventing the adversary from learning information about the
lengths of the passwords stored in your password manager.

5. Briefly describe your method for preventing swap attacks (Section 3). Provide an argument for why
the attack is prevented in your scheme.

6. Suppose instead that we only had 16 bits of trusted storage. How would you modify the defense
against rollback attacks to remain secure even in this setting? You may assume that the user will
make at most 216 updates to the password manager.

7. How much time did you spend on this assignment? This is for calibration purposes, and the
response you provide will not affect your score.

8. Optional feedback. Please let us know if you have any feedback on the design of this assignment or
on the course in general.

Please submit your responses as a PDF file answers.pdf with your submission.

7 Submission Instructions

To submit your assignment, upload the following two files to Gradescope:

• password_manager.py: this file contains your implementation of the password manager.

• answers.pdf: this file contains your answers to the short answer questions.

Do not submit any other files with your submission (e.g., do not submit your copy of main.py). You should
make only one submission per group. Indicate all group members on Gradescope.
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