
Suppose I is a Merkle-Damgard Lash function built from a sure compression function

several
ways to build a keyed function :

1 . Prepend key : FCK
,

m) = = H(k 11m)

↳ Insecure due to structure of Merkle-Damgard : can mount an "extension attack
.

" given H(k1/m)
,

can compute

H(k1/m1/m') by extending Merkle-Dangard chain

2 . Append key : F(k
, m) : = H (m//k)

↳> Similar to hash-then-MAC construction and valuerable to same offline attack : adversary finds a collision in the

Merkle-Damgard prefix and uses that to construct a forgery ~ for SHA-I
, they used PDF files

↳ Structure exploited in SHA-1 collision demonstration (can generate arbitrary collisions once prefix matches)
3

. Envelope method : F(k
, m) = = H(k()m(/k) 3 for reasonable pseudorandomness assumptions on h (e.g, both

4. Two-key nest : F((K
,

(2) , m) = = H(k2 //H(k , 1/m)) F, (k
,m) : = h(k

, m) and Fz(k
,
m) : = h(m , /) is a PRE)

,
both

of these constructions are secure PREs on a variable- size domain

y

hash-based MAC

HMAC is a PRF/MAC based on the two key rest (though with correlated keys) :

HMAC(k
,

m) =
= H(k ,

1) H(k2
,
m))

where k
.

5 k*ipad and k2* k * oped
and ipad and oped are fixed strings (specified in the HMAC standard)

Y I
0x36 repeated Ox3C repeated

security : Since ,
and ke are correlated

,
need to make stronger assumption on security (e.g,

h remains pseudorandom under a relatedIlack)en

antiations
:

Typically ,
denoted HMAC-H where I is the hash function

e
.
g

,
HMAC-SHA1

HMAC-SHA256 -
one of the most widely-used MAC on the web (used in SSL/TLS,

IPsec
, SSH , and more

#
for key-derivation : Recall that under reasonable assumptions ,

HMAC is a secure PRF

In
many protocols, we need to derive multiple keys from a single master key le.g,

derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

kenc HMAC (kmaster
,
"enc") 3 PRE security says derived keys are computationally indistinguishable from

kmac- HMAC (kmaster
,

"mac") uniform
M

I master
key

↑

tag (just has to be unique)derived keys
This approach is used in TLS and IPsec to derive session kys durin Session setup
↳ General paradigm is the "expand" step in hash-based key derivation (HKDF - RFC 3869)

↳ Consists of two procedures :

-

Extract : derive a master key from
entropy-

source (e.g,
a user password)

-

and : derive sub-keys from the master

key
Both steps rely on HMAC

Another approach to construct MACs : domain extension for PRIS Ismall-domain PRI # largerdomain PRI]

Approach 1 : use CBC (without IV)

-outputL

-

Not encrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "raw-CBC"

Raw-CBC is a way to build a drdomain PRE from a sadomain one

↳
messages more precisely,

raw-CBC is a prefix-free PRI : pseudorandom as longCan show security prefix
length

I
as PRE never evaluated on two values where one is a prefix of other

I
messages as a special case

But not secure for w length messages
: "Extension attack"

1 . Query for MAC on arbitrary block X :

At->
F(n

,
x) ↑- Fl

, x) =

2 . Output forgery on message (X ,
x # t) and tag

-
=> t is a valid tag on end age (x

, tex)

↳ Adversary succeed with advantage I

raw CBC can be used to build a MAC on fixed-length messages,
but not variable-length messages

(more generally , prefix-free)
(ECBC)

For variable-length messages,
we use "encrypted CBC" : standards for banking/financial services

en critical for security↳
variant used in ANSI X9.9

,
ANSI x19.9 standards / lusing the same key not secure)

↳

&
apply another PRE with a different key to the output of rawCB(

aput!
To use encrypted CBC-MAC

, we need to assume message length is even multiple of block size (similar to CBC encryption)
↳ to sign messages that are not a multiple of the block size

,
we need to first pad the message

↳>
as was the case with encryption , padding must be injective
↳ in the case of encryption , injectivity needed for correctness

↳ in the case of integrity, injectivity needed for earity [if pad(mo) =

pad (m,) ,
Mo and m

,
will have the ja)

standard approach to pad
:

append 1000 ... 0 to fill
up block [ANSI X9. 9 and ANSI x9. 19 standards)

- Note : if message is an even multiple of the block length ,
need to introduce a dummy block

↳ Necessary for
any injective function : 190, 13

=) > 190 , 134)
-

This is a btadding scheme [PKCS#7 that we discuss previously in the context of CBC
encryption

is a Aepadding scheme)

Encrypted CBC-MAC drawbacks : always need at least 2 PRF evaluations (using offerent keys) especially bad for authenticating
messages must be padded to block size

3
short (e.g, single-byte) messages

Better approach :

raw CBC-MAC secure for prefix-free messages
↳ Can we apply a "prefix-free" encoding to the message?

-

tion 1 : Prepend the message length to the
message
52

equal-length messages cannot have one be prefix of other

different-length messages differ in first block

Problematic if we do not know message length at the beginning (e.g.,
in a streaming setting)

Still requires padding message to multiple of block size)
-

Q2 : Apply a random secret shift to the last block of the
message

(X
, x2

,
. .

., xe) - (X, x2
,

. .

.,
Xe0K) where KCX

Adversary that does not know In cannot construct two messages that are prefixes except withI probability "IN) (by guessing k)

basis for CMAL (standardized by WIST in 2005)

