
tingblock ciphers : typically,
relies on an "iterated cipher"

Difficult to design ! Never invent
your own crypto-use well-studied, standardized constructions and implementations !

We will look at two classic designs :

on modern Intel processors,

- DES/3DES (Data Encryption Standard) 1) (developed at IBM) - (with AES-NI)
,

-4 cycles/
round

,-

AES (Advanced Encryption Standard) 202 [most widely used block cipher , implemented in hardware in Intel processors

DES design uses 56-bit keys (and 64-bit blocks)

36-bit keys was a compromise between 40-bit keys (NIST/NSA) and 64-bit keys (cryptographers - notably Hellman)
↳ turned out to be insufficient

-

1997 : DES challenge solved in 96 days (massive distributed effort)

- 1998 : with dedicated hardware
,

DES can be broken in just 36 hours ->
not secure enough !

-

2007 :

using off-the-shelf FPGAs (120)
, can break DES in just 12. 8 days

-

anyone can now break DES !

↳ 2-DES : apply DES twice (keys now 112-bits)

↳ meet-in-the middle attack gives no advantage (though space usage is high)
↳ 3-DES : apply DES three times [3DES ((k,, kn

,
ki) ,x) : = DESCKs

,

DES'(k
,

DESCk
,,
x()]

↳ 168-bit keys
- standardized in 1998 after brute force attacks on DES shown to be feasible

AS (2002 -

most common block cipher in use today) -

- 3DES is slow (3x slower than DES)
-

64-bit block size not ideal (recall that block size determines adversary's advantage when block cipher used for encryption)
↑

also have 192-bit and 256-bit variants

AES block cipher has 128-bit blocks (and 128-bit keys) (but block size always 218)

↳ follows another classic design paradigm
: iterated Even-Mansour (also called alternating key ciphers)

Even-Mansour block cipher : keys (k ,
k2)

, input X :

= 1kz
↓

k2 ↓kX
=> - y ** T- ->

-

Evaluation Inversion

Even-Mansour) : If it is modeled as a random permutation ,
then the Even-Mansour block cipher is secure (i.e

.,
it is

a secure PRP).

The AES block cipher can be viewed as an iterated Even-Mansour cipher :
key-size
↓

128-bit key
-

AES key expansion (key schedule) AES-128 : 10 rounds#I I·

-- - AES-192 : 12 roundsk
, 11 I 19 AES-256 : 14 rounds

* - - + - ... - + - y
(block-size all 128 bits)

Permutations TAES and TTAES are fixed permutations and annot be ideal permutations
↳

cannot write down random permutation over

↳
Cannot appeal to security of Even-Mansour for security 30,13120

↳ But still provides evidence that this design strategy is able [similar to DES and Luby-Rackoff]

AES round permutation : composed of three invertible operations that each operate on a 128-bit block

↳Earl
subytes : apply a

entin"i" " in se
(chosen

very carefully to resist attacks)

ShiftRows : cyclic shift the rows of the matrix

128 bits arranged

- Ist now unchanged (z)

in 4-by-4 grid of
- and row shifted left by 1

elements are polynomials over GF(2)

bytes (30 ,138)
- 3rd now shifted left by 2 modulo the irreducible

-

4th row shifted left by 3

↑

polynomial x8 + xY + x3+x + 1

MixColumns : the matrix is interpreted as a 4-by-4 matrix over GF(28) and multiplied by
a fixed itible matrix (also carefully chosen and hard-coded into the standard

Observe: Every operation is invertible
,

so composition is also invertible
-

TAES : SubBytes
; ShiftRows ; MixColumns

TRES : SubBytes ; ShiftRows No MixColumns for the last round done so AES decryption circuit better)I
resembles AES encryption

ityof AES : Brute-force attack
: 218

126 . 1

Best-known key recovery attack : 2 time
-

only 4x better than brute force!

What does 218-time look like ?

-

Suppcose we can try 24 keys a second .

-> 2
88

seconds to break 1 AES key
~ 10 years (710 million times larger than age of the universe !)

-

Total computing power on Earth (circa 2015)

↳ estimated to be ~" operations/second Currently ,
bitcoin mining computes 24 Lashes/second)

80
Let's say we can do Go operations/second
↳ still require I seconds to break AES ~9 million years of compute

If we more to 256-bit keys,
best brute force attack takes 2234:2

time Con AES-256)

~
e.g., quantumputersv

In well-implemented systems,
the cryptography is not the weak point - breaking the crypto requires new arithmic techniques

↳ But side channels/bad implementations can compromise Crypto

A parallelizable MACIPMAC)
-

general idea :

A
derived as ECK

,
04) -

so key is just k
,

** ... Le P(K,) are important - otherwise
, adversary can

↓
P(k, 1)- P(k,2)-* P(k,31 ->⑰ P(k,

e)- #mute the blocks

↑ ↳
"mask" term is of the form Vik where

A multiplication is done over GF(2") where i is

in
L

the block size (constants Vi carefully chosen for

- L

⑰ efficient evaluation)S

I

↳))-> tag

Can use similar ideas as CMAC Crandomized prefix-free encoding) to
support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable (assuming F is a PRP)
↳

suppose we change block : from m[i) to m'[] : PMAC is "incremental" :

compute F-(k,,tag) * - P1K
,
i)) ④AsPCK,

i) I can make local updates
old value without full recomputation

In terms of performance :

-

On sequential machine
, PMAL comparable to ECBC, NMAC,

CMAC Best MAC we've seen so far
,

but not used
...

- On parallel machine, PMAC much better
3

Reason : patents: (not patented anymore
!)

summary : Many techniques to build a large-domain PRF from a small-domain one (domain extension for PRF)
-> Each method (ECBC

,
CMAC

, PMAC) gives a MAC on length messages
↳

Many of these designs (or their variants) are standardized
-

How do we mine confidentiality and integrity ?
↳ Systems with both guarantees are called Ratedencryption schemes - gold standard for symmetric encryption

naturaloptions :

1. Encrypt - then MAC (TLS 1 .2+
, IPsec) - guaranteed to be secure if we instantiate using CPAsecureencrypto

L2 . MAC-them-encrypt (SSL3.0/TLS 1. 0
,

802.
11 :) 2

as we will see
, not always secure

Definition.
An encryption scheme TTE : (Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:

-> CPA security I confidentiality]
-

ciphertext integrity [integrity]
adversary challengeren

k = k

T 1-can a
it a sanc.....

special symbol 1 to denote ialid ciphertext-

and Decrypt (1,) +
e

Define CIAdvIA,
IsE] to be the probability that output of above experiment is 1.

The scheme TTSE satisfies

ciphertext integrity it for all efficient adversaries A
,

CIAdr[A
,
TsE] = 1

.)x)neg
NL

security parameter determines key length

Ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertexts it can generate are those that are

already valid. Why do we want this property ? Encrypted under kA
kA

,
kB KE

Consider the following active attack scenario : ↳ mail server

-

Each user shares a key with a mail server

KA /-

To send mail, user encrypts contents and send to mail server Alice

- Mail server decrypts the email
, re-encrypts it under recipient's key and delivers email

Eve intercepts and

Encrypted under kA
If Eve is able to tamper with the encrypted message, kA

,
kB KE

F Ithen she is able to learn the encrypted contents (even if mail Server

the scheme is CPA-secure)
KA

modifies

must te
a

↳> More broadly ,
an adversary can tamper and inject ciphertexts Alice Bob

into a system and observe the user's behavior to learn information

about the decrypted values - against active attackers, we need ger notion of security

Definition .
An encryption scheme Is(Encrypt, Decrypt) is secure against chosen-ciphertext attacks (CCA-secure) if for all efficient

adversaries A
,

CCAAdvIA
,
IsE] = negl. Where we define CCAAdvIA,

TSE] as follows :

bE90, 13

adversary
-

hallenge t
mol)

,
m!

tIn
b'E [u, 13
↓

↑

adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertexts it received from the

SCAAdrIA ,
TsE] : /PrIb= 1(b = 07 -Pr[b= 11b = 1]) challenger (otherwise, adversary can trivially break security (

↳ called an "admissibility" criterion

CCA-security captures above attack scenario where adversary can tamper with ciphertexts

Rusoutpossibility oftransforming encryption
of

Itoencryptionof against passive adversariesis
↳ We will see an example of a real CCA attack in HW1

rem.
If an encryption scheme TTSE provide authenticated encryption,

then it is CCA-secure .

2(Ideal
.

Consider an adversary A in the CCA-security game. Since TTSE provides ciphertext integrity ,
the challenger's response

to the adversary's decryption query will be 1 with all but negligible probability. This means we can implement the

decryption oracle with the "output 1" function. But then this is equivalent to the CPA-security game .

[Formalize using a hybrid argument] simple counter-example : concatenate unused bits to end of ciphertext
in a CCA-secure scheme (stripped away duringI decryption)

Ate: Converse of the above is not true since CCA-security # ciphertext integrity·
↳ However

, CCA-security
+

plaintext integrity
-> authenticated encryption

away : Authenticated encryption captures meaningful confidentiality +

integrity properties ; provides ve security

Frt-then-MAC : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

Encrypt-then-MAC to be the following scheme :

Encrypt'((kE,
km)

,
m) : c < Encrypt(kE,

m)
7A /

t < Sign (km
,
c)

pendent keys
output (c

, 5)

Decrypt"((kE,
km)

,
(c

,
+1) : if Verify (km

,
c

,
t) = 0

, output 1

else
, output Decrypt (kE ,

c)

orem.
If (Encrypt, Decrypt is CPA-secure and (Sign, Verify) is a secure MAC

, then (Encrypt' , Verify') is an authenticated

encryption scheme
.

(Sketch)· CPA-security follows by CPA-security of (Encrypt, Decrypt)· Specifically,
the MAC is computed on ciphertexts and not

the
messages .

MAC key is independent of encryption key so cannot compromise CPA-security
Ciphertext integrity follows directly from MAC security (i .e , any valid ciphertext must contain a new tay on some

ciphertext that was not given to the adversary by the challenger)

#rtant notes : - Encryption
+ MAC keys must be endent . Above proof required this (in the formal reduction

,
need to be able to

simulate ciphertexts/MACs -

only possible if reduction can choose its own key).

↳ Can also give explicit constructions that aremybroken if same key is used (i.e,
both properties fail to

hold)
↳ In general , never re cryptographic keys in different schemes ; instead

, sample fresh, independent keys !

-

MAC needs to be computed over the entire ciphertext
-

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA-secure encryption)
↑

meansfir readi
·

RNCryptor in AppleiOS (for data encryption) also problematic CHMAC not applied to encryption IV)
is mateable

#then-Encrypt : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

MAC-then-Encrypt to be the following scheme :

Encrypt'((kE,
km)

,
m) : t < Sign (km

,
m)

c Encrypt (kE
,

(m
,t1)

but Couty

Decrypt"((kE,
km)

,
(c

,
+)) :

compute (m
,t) < Decrypt (KE,

<)

if Verify (km ,
m

,
t) = 1

, output m
,

else
, output I

Not generally secure ! SSL3. 0 (precursor to TLS) used randomized (BC +

secure MAC

↳
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

YPOODLE attack on SSL 3,0 can decrypt al encrypted traffic
using a CCA attack]

Padding is a common source of problems with MAC-then-Encrypt systems [see HW2 for an example)

In the past,
libraries provided separate encryption

+ MAC interfaces
-

common source of errors

↳ Good library design for crypto should minimize ways
for users to make errors

, at provide more flexibility

Today ,
there are standard block cipher modes of operation that provide rated encryption

-

One of the most widely used is GCM (Galois counter model - standardized by NISt in 2007

-

& mode : follows encrypt-then-MAC paradigm
-

CPA-secure encryption is nonce-based counter mode Most commonly used in conjuction with AES

- MAC is a Carter-Wegman MAC
3 CAES-GCM provides authenticated encryption)

It "encrypted one-time MAC"

&

& encryption
:

encrypt message with AES in counter mode
~

Galois Hash
~ keyderivedfromFree

V

compute Carter-Wegman MAC on resulting message using CHASH as the underlying hash function

and the block cipher as underlying PRE
&

CHASH operates on blocks of 128-bits

operations can be expressed as operations over

Typically , use EGCM for authenticated encryption GF(2R8) -isfed with 218 elements

implemented in have -

very
fast !

Oftentimes
, only part of the payload needs to be hidden

,
but still needs to be micated

↳ e. g., sending packets over a network : desire confidentiality for packet body, but only integrity for packet headers (otherwise
,

cannot route !)

AEAD : authenticated encryption with associated data

↳

augment encryption scheme with additional plaintext input ; resulting ciphertext ensures integrity for associated data
,

but not confidentiality
I will not define formally here but follows straightforwardly from AE definitions)

↳
can construct directly via "encrypt-then-MAC" : namely, encrypt payload and MAC the ciphertext + associated data

↳ AES-GCM is an AEAD scheme

