
Thus far
, we have samed that parties have a stared key.

Where does the shared key come from?

Can we do this using the tools we have developed so far ?

So far in this course :

I
CPA-secure encryption-

PREs

-MAC
=> authenticated encryption key agreement :↳

Alice Bob
->

Can we use PRIs to construct secure key-agreement I - Requirements :

i
-- 13k ,

= k
=

= k

protocols? - with high
it

I
Ya

2
probability

2) Eavesdropper
cannot learn

k (efficiently)

Wepuzzles
:

Suppose + : x-y is a function that is hard to invert

S"one-way function")
Alice Bob -> for example ,

a secure PRG
- -

X , , . . ., xn = X 6 : 90, 134 - 90 , 12" is
one-way

y ,
= f(x) . - - -

,
n

= f(x)
-

i < [n]

find x
:

such that f(xi)=y :
[solve the "puzzle")

--AE (K, m) derive a key k from x:

*

we assume that the

↓
-

derived from Xi solution is unique

try each key Ki to

decrypt ciphertext

Suppose it takes time t to solve a puzzle . Adversary needs time O(uth to solve all puzzless and identify key.

Honest parties
work in time O(n+t)

.

↳
Only provides wrp between honest parties and adversary

Can we get a super-polynomial gap/ using
·PRGs ? Very difficult ! [Impagliazzo- Rudich]st

Can we get
a super-linear gap /

PRGs? Very difficult ! [Barak - Mahmoody]just
using

result holds even if start with a

- one-way permutation
Impagliazzo- Rudich : King the existence of key-agreement that makes dabox use of PRO implies PF NP

.

We will turn to algebral number theory for new sources of hardness to build key agreement protocols .

Definition.

A
group consists of a set D together with an operation

* that satisfies the following properties
:

-

Aure : If 91 ,92t D
,

then g ,
*gat D

EhosorativityhorestableenDecSean GetFat g =

gthatg-e
*
gag

In addition
,

we say a group is commutative (or ablion) if the following property also holds :

- Commutative : For all gr , gzGD , g,* 92= g2*91-

x
called "multiplicative" notation

Nation : Typically ,
we will use

"" to denote the
group operation (unless explicitly occified otherwise)

.
We will write

81

g4 to denote

g. 8
(the usual exponential notation)

.

We use "I" to denote themitativeidentity

lesof
groups

: (TR
,
+) : real numbers under addition

(2
, 1) : integers under addition

(p ,
+ : integers modulop under addition [sometimes written as </p1]
~ here

, p
is sieV

ructureof
p
* Can important group

for cryptography) :

K
= 3x= <p : there exists y t 4p where xy= 1 /mod pl3

↑

the set of elements with multiplicative inverses modulo
p

What are the elements in p*?

->
greatest common

divisor

Beut'sidentity
: For all positive integers X

,y G I
,

there exists integers a
,

b EK such that ax+ by
= gcd(x, y) .

*
= (1

,
2

,
. . -

, p-13 .3rollary:For Prime
... -1)

. By Benout's identity , gad(X ,p)= 1 so there exists integers a
,
E where I =

ax+y
Modulo

p ,
this is ax=1 (modp) so a

=

x
-1(modp) .

Coefficients a
,
b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm :

#

ean algorithm : algorithm for computing gcd(a,
b) for positive integers a>b :

relies on fact that gcd(a , b) = gcd(b, a(mod b) :

to see this : take any
ah b

↳
we can write a

= big+r where g?/ is the quotient and

03 r < b is the remainder

↳ d divides a and b > & divides b and r

-> g(d(a ,b) = gcd(b , r) = ycd(b , a(modb))

gives an explicit algorithm for computing gad : repeatedly divide :

gcd(60 ,
27) : 60 = 27(2) + 6 (g = 2

,
r = b) e ged(60 ,

27) = gcd(27 ,
6)

- -
2 L

27
= 6(4) + 3 [g = 4

,
r

= 3) gcd(27,6)
=

gcd(6, 3)
- -L L

↳ =

3(2) + 0 (g = 2
,

r = 0] - gcd(6 ,3) = gcd(3 , 0) = 3

"rewind" to recover coefficients in Bezont's identity :

60 = 27(2) + 6
- -

2 L

eteieee S 27
= 6(4) + 3 -> 3 = 27-

546
= 60 - 27(2)7

27 - (60 - 27(2))4
--L

↳ = 3(2) + 0
= 27(9) + 60(- 4)

↑ -
coefficients

Frtions needed : OCloya) - i .e., bittength of the input (worst case inputs
: Fibonacci numbers]

Implication
: Euclidean algorithm can be used to compute modular inverses /faster algorithms also exist)

