Thus ther, we have assumed that parties have a shared key. Where does the shared key come from? Can we do this using the tools are have developed so far? So far in this carre: PRFs CPA-secure encryption PRFs MAC Can we use PRFs to construct secure key-agreement protocols? Developed so far? MAC Can we use PRFs to construct secure key-agreement protocols? Developed so far? MAC Can we use PRFs to construct secure key-agreement protocols? Developed so far? MAC Can we use PRFs to construct secure key-agreement protocols? Developed so far? So far in this carre: Developed so far? So far in this carre: PRFs So far in this c

Merkle puzzles: Suppose f: X -> y is a function that is hard to invert

•)

Suppose it takes time t to solve a puzzle. Adversary needs time O(nt) to solve all puzzles and identify key. Honest parties work in time O(n+t).

L> Only provides linear gap between honest parties and adversary

Can we get a super-polynomial gap just using PRGs? Very difficult! [Impogliazzo-Rudich] Can we get a super-linear gap just using PRGs? Very difficult! [Baruk-Mahmoody]

result holds even if start with a one-way permutation RG inter D + 1D

Impogliazzo-Rudich: <u>Proving</u> the existence of key-agreement that makes <u>black-bar</u> use of PRG implies P # NP.

We will turn to algebra | number theory for new sources of hardness to build key agreement protocols.

Defitien. A group consists of a set G together with an operation
$$*$$
 that satisfies the following properties:
- Closure: If $g_1g_2 \in G$, then $g_1 * g_2 \in G$
- Associativity: For all $g_1, g_2, g_3 \in G$, $g_1 * (g_2 * g_2) = (g_1 * g_2) * g_3$
- Identity: There exists an element $e \in G$ such that $e * g_2 = g = g * e$ for all $g \in G$
- Inverse: For every element $g \in G$, there exists an element $g^* \in G$ such that $g * g^* = e = g^* * g$
In addition, we say a group is commutative (or abdom) if the following property also holds:
- Commutative: For all $g_1, g_2 \in G$, $g_1 * g_2 = g_2 * g_1$
- called "nultiplicative" notation
Notation: Typically, we will use "." to denote the group operation (unless explicitly specified otherwise). We will write
 g^* to denote $g \cdot g \cdot g \cdot g$ (the usual exponential notation). We use "1" to denote the multiplicative identity
X times
Examples of groups: (R, +): real numbers under addition
(Z, +): integers under addition
(Z, +): integers modulo p under addition
(Zp, +): integers modulo p under addition
(Zp, +): integers (an important group for cryptography):
- The structure of \mathbb{Z}_p^* (an important group for cryptography):

What are the elements in Zp?

Bezout's identity: For all positive integers X, y E Z, there exists integers a, b E Z such that ax + by = gcd(x, y). <u>Corollary</u>: For prime p, Zp = {1,2,..., p-1}. <u>Proof</u>. Take any x E {1,2,..., p-1}. By Bezout's identity, gcd(x,p) = 1 so there exists integers a, b E Z where 1 = ax + bp. Modulo p, this is ax = 1 (mod p) so a = x⁻¹ (mod p).

Coefficients a,b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:

Euclidean abgrithm : algorithm for computing gcd (a,b) for positive integers a > b: relies on fact that gcd(a,b) = gcd(b, a (mod b)): to see this: take any a > b \Rightarrow we can write $a = b \cdot g + r$ where $g \ge 1$ is the quotient and $0 \le r < b$ is the remaindur \Rightarrow d divides a and b \iff d divides b and r \Rightarrow gcd(a,b) = gcd(b, r) = gcd(b, a (mod b)) gives an explicit algorithm for computing gcd: repeatedly divide: gcd(60, 27): 60 = 27(2) + 6 [g = 2, r = 6] $\rightarrow \Rightarrow$ gcd(60, 27) = gcd(27, 6) $17 \stackrel{r}{=} 6 \stackrel{(+)}{+} + 3$ [g = 4, r = 3] $\rightarrow \Rightarrow$ gcd(6, 3) 6 = 3(2) + 0 [g = 2, r = 0] $\rightarrow \Rightarrow$ gcd(6, 3) = gcd(5, 3) 6 = 3(2) + 0 [g = 2, r = 0] $\rightarrow \Rightarrow$ gcd(6, 3) = gcd(3, 0) = 3 "rewind" to recover coefficients in Bezent's identity: ecterded $f = 6(\frac{1}{2} + 3) \Rightarrow 3 = 27 - 6 \cdot 4$ 27 - (60 - 27(2)) + (6) = 37(2) + 027 (9) + 60 (-4)

coefficients

Iterations reeded: O(loge) - i.e., bit-tength of the input [worst case inputs: Fiberacci numbers]

Implication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)