
de
~cyclic groups are commutative ~

fired to be the identity element

L I 161-1]
.Definition .

A
group &

is ic if there exists a gerator o
such that I = 99 , 9 , ..., I

Definition. For an element geD , we write (g) = (9 , g, ..., gets to demote the set generated by 9 (which need not be the

entire set. The cardinality of (g) is the order of g
(i .e., the size of the "subgroup" generatede Border=1Example. Consider &*

= 91
,
2
,
3
,
4
,
5
,
63.

.

In this case
,

12) = 91 , 2 , 43 12 is not a generator of My
*) ord (2) = 3

13) = 91 , 3 , 2, 6, 4,
33 (3 is a generator of MY) ord (3) : 6

orange'sTheorem . For a group
D
,
and

any
element gCD ,

ord (g) /1D) (the order of
g
is a divisor of 161).

↳ For I , this means that ord(y)/p-l for all gtD

⑰(Fermat's Theorem) : For all xeBp*, xY
=

1 (modp)
Roof . (2) = 191 , 2 , . . ., p-131 =

p-1
↓

for integer I

By Lagrange's Theorem ord(x)/p-l so we can write p-l= koord(X) and so x*= (yord(x)" = 1 = = (mod pl

Imation : Suppose Xe , and we want to compute x
*
= Yp
*

for some large integer yx4
↳ We can compute this as

x
8
= xy(modp-1) (modp)

Since xY= 1 /modp(
↳ Specifically , the exponents operate modulo the order of the group

↳
Enivalently : group (g) generated by g is morphic to the group (X+) where g= ord (g)q(

(g) = (g , +)

gY x

X times

e
Nation : g

Y
denotes g

.

g
.....

g

- Y
denotes (g)

"

Iinverse of group element g")g

gxdenotes g(X) where x computed mod ord(y) - need to make sure this inverse exists!

Computing on group elements : In cryptography , the groups we typically work with will be large (e.g.,
225" or 2024(

-

-

Size of group element
(# bits) : ~log 16) bits (236 bits/2048 bits)

-

Group operations in Ap*: logp bits per group
element

addition of mod
p elements : Ollog pl

multiplication of mod p
values : naively Ollog2p)

Karatsuba O(log""p)
Schnhage-Strassen (CMP library) : O(log plogloyplogloglogp)
best algorithm Ollogp loglogp) [2019]

↳ not yet practical (<2409 its to be faster ...)

exponentiation : using repeated squaring
:

g , g , g" , go , . . ., ogPs
,

can implement using O(logp)
multiplications [O(logp) with naive multiplication]

↳>
time/space trade-offs with more precomputed values

division (inversion) : typically O(logp) using Euclidean algorithm (can be improved)

mutationalproblems : in the following, let be a finite cyclic group generated by g
with order g

-

blogproblem : sample x ** Ig

given h= gX/ compute X

- tional Diffie-Hellman (CDH) :

sample.
*

y

yY
, g , compute gXyg

-FinalDiffie-Hellman (DDH) : sample x,y ,
r = Ig

distinguish between (g , g4 , g8 , g4) vs . (g , gY, gb , g)

Each of these problems translates to a corresponding computational assumption :

-e.g., g
= 2
*

nition
.

Let D =

<g) be a finite cyclic group of order o (where g is a function of the security parameter x)
The DDH assumption holds in D if for all efficient adversaries A :

Pr[x
. y
=

p
: A(g, gY, g8 , g4) = 1)-Pr2x, y , rep : Alg , gx, gt , gr)

= 13) =

neg((x)
The CDH assumption holds in Dif for all efficient adversaries A:

Pr[x
, y g

: A(g , gY, gy)
= gY3) =

reg((x)
The discrete log assumption holds in i if for all efficient adversaries A :

PrIxckg : Alg , gY)
= x] =

regl(x)

certainly
: if DDH holds in D => CDH holds in D E discrete log holds in $

- ·??I

there are groups where CDH Major open problem
: does this hold?

believed to be hard
, but DDH is

Can we find a group
where discrete log is hard

but CDH is easy ?

easy

Diffie-Hellman key exchange
-

Let P be a group of prime order p (and generator g) - choice of group , generator,
and order fixed by standard

Alice
e

x =
p

yep
-↳

compute
4 = (g2)

*

compute g
* = (gY)

*

↳ I
shared secret : gxy an

But usually , we want a random bring as the key , random
group element

↳ Element gY has logp bits of entropy , so should be able to obtain a random bitstring with <logp bits

↳ Solution is to use a "randomness extractor"

↳ Information- theoretic constructions based on universal hashing/pairwise-independent hashing
Closes some bits of entropy)

Instantiations : Discrete log in Tp
*

when p is 2048-bits provides approximately 128-bits of security) p)
-

35
↳ Best attack is General Number Field Sieve (GNES) - runs in time 2

log
time

Much better than brute force - 21094 &

cube root in exponent not ideal !

↳ Need to choose p carefully if we want to double security,
- le.g, avoid cases where p-l is smoothlhaving

small prime factors

need to increase modulus by 8x !

for DDH applications , we usually set p=2g+1 where
group operations

all
L

le.g, 16384- bit
modulus for 236 bits

-

g is also a prime (p is a "safe prime") and work in the scale linearly low worse) in of security)
subgroup of order g in 7p

* (Is has order p-1= 2g) bitlength of the modulus

Elliptic curve groups
: only require 256-bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time 2199/ [9-algorithm - can discuss at end of I
↳ Much faster than using It : several standards

semester

- NIST P256
,
4384

,
P312 can discuss more at end of semester

-

Dan Bernstein's curves : Curve 25519
3 For in advanced crypto class)

↳

Widely used for key-exchange
+

signatures on the web

When describing cryptographic constructions
,
we will work with an abstract group

(easier to work with, less details to worry about

↳ Use a "random oracle" or an "ideal hash function" [heistic : SHA-256(g , gY, g8 , gx3)) /Direct
+

1
very efficient in practice) good practice: hash all impactsF

↳

Ansecurity
: 1 . Rely on HashDH assumption (

9 , g , gt , H(g, gY, g2, gx3)=(g , g" , y , r)
4

where H : D -> 90 ,13" and r 90 , 132
4

2 .
Model Has ideal hash function H : 4- 90, 13" (i .e

.,
random oracle) and

rely on CDH in &[inability to evaluate Hon g" => output is random string)

Instantiations : Discrete log in Tp
*

when p is 2048-bits provides aproximately 128-bits of security) i)- 0 35
↳ Best attack is General Number Field Sieve (GNES) - runs in time 2

log
time

Much better than brute force - 21094 &

cube root in exponent not ideal !

↳ Need to choose p carefully if we want to double security,
- le.g, avoid cases where p-l is smoothlhaving

small prime factors

need to increase modulus by 8x !

for DDH applications , we usually set p=2g+1 where
group operations

all
L

le.g, 16384- bit
modulus for 236 bits

-

g is also a prime (p is a "safe prime") and work in the scale linearly low worse) in of security)
subgroup of order g in 7p

* (Is has order p-1= 2g) bitlength of the modulus

Elliptic curve groups
: only require 256-bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time 2199/ [9-algorithm - can discuss at end of I
↳ Much faster than using It : several standards

semester

- NIST P256
,
4384

,
P312 can discuss more at end of semester

-

Dan Bernstein's curves : Curve 25519
3 For in advanced crypto class)

↳

Widely used for key-exchange
+

signatures on the web

When describing cryptographic constructions
,
we will work with an abstract group

(easier to work with, less details to worry about

