Computational particles: in the following, let 6 be a finite cyclic group generated by g with order g
Theoretic by problem: sample
$$x \in \mathbb{Z}_{4}$$

given $h = g^{x}$, compute x
- Computational Diffie-Hellman (CDH): sample $x, y \notin \mathbb{Z}_{4}$
given g^{x}, g^{y} , compute g^{xy}
- Decisional Diffie-Hellman (DDH): sample $x, y, f \cong \mathbb{Z}_{4}$
distinguish between $(g, g^{x}, g^{y}, g^{y}, g^{x})$ us. $(g, g^{x}, g^{y}, g^{y}, g^{z})$
Each of these problems translates to a corresponding computational assumption:
Each of these problems translates to a corresponding computational assumption:
Deficition. Let $G = (g)$ be a finite cyclic group of order g (observe g is a function of the security parameter λ)
The DDM assumption holds in G if for all efficient adversaries $A :$
 $P_{[X, y]} \stackrel{e}{=} \mathbb{Z}_{p} : A(y, y^{x}, g^{y}, g^{x}) = 2] - P_{[X, y, f]} \stackrel{e}{=} \mathbb{Z}_{q} : A(y, g^{x}, g^{y}, g^{z}) = 1]| = negl(\lambda)$
The discurption holds in G if for all efficient adversaries A :
 $P_{[X, y]} \stackrel{e}{=} \mathbb{Z}_{g} : A(y, g^{x}, g^{y}) = g^{x}] = negl(\lambda)$
The discurption holds in G if for all efficient adversaries A :
 $P_{[X, y]} \stackrel{e}{=} \mathbb{Z}_{g} : A(y, g^{x}, g^{y}) = g^{x}] = negl(\lambda)$
Certainly : if DDH holds in G \Rightarrow CDH holds in G \Rightarrow discrete log holds in G

Diffie-Hellman key exchange

$$\begin{array}{ccc} \underline{Alice} & \underline{Bob} \\ \chi \stackrel{\text{\tiny \ensuremath{\mathbb{Z}}}}{=} & \chi \stackrel{\text{\tiny \\ensuremath{\mathbb{Z}}}}{=} & \chi \stackrel{\text{\tiny \\ensuremath{\mathbb{Z}}}}{$$

$$Compute g^{xy} = (g^{x})^{x} \qquad compute g^{xy} = (g^{x})^{y}$$

> shared secret:
$$g^{\chi g} \leftarrow$$

But usually, we want a random bit-string as the key, not random group element

- L> Element gxy has log p bits of entropy, so should be able to obtain a rondom bitstring with l < log p bits L> Solution is to use a "randomness extractor"
 - is Information-theoretic constructions based on universal hashing / pairwise-independent hashing
 - (loses some bits of entropy)

	حا	0.		ĸ			. 11			۰.۱	1		c	. 4	, (- 11			8 H A	201	ſ	. X	4	. 26 4 1	1	bin	ds the	- key	to]
		Use (ver	م		ndom	. 011	ucle"	05	0.n	1,01	دما	hash	. tun	ction.		Hen	ristic		ϿήͰ	256	رم	\mathfrak{I}^{n}	<u>ځ</u> ې	8 🔒	J	+ +	he enti	ire. Dt	
		(ver	y el	ficie	nt in	n pro	.ctice)								J	000	grac	fre:	heat	· all	inp	uts N					ידי	
			\rightarrow	Argu	ing	secu	: ;	1.	Re	ly or	\ H	lashDf	as	sump	tion.		a, 0	۹ [×] , 9	۲ (۵	ا(م, و	x, 3	, 3 ^{×3}) ຂໍ	(م	, م [×] ,	g*,	r)		
				0	0		1			1			when	ne. '	H١	<u>б</u> "–	» {o	,13 ⁿ	٥.	d	r &	{o,1	<u>3</u> ^	5	0	0			
								2.	Μ	odel	H													ndom	٥٢	acle)) an	J.	
																											ndom		1
										1	-						1				2)		1		-			0
.		-		1	_	7*						_					10												
<u>Lnsto</u>	untiations:	Uisc	rete	60	in a	″p	when	P	5	1041	s-be	s pr	ovides	4	oproxi	mately	1 12	-8- bi	.ts c	7 8	دسرم	วัลด	1 P						

→ Best attack is General Number Field Sieve (GNFS) - runs in time 2 time Much better than brute force - 2¹⁰g P → Need to choose p carefully having small prime factors if we want to double security, (e.g., avoid cases where p-1 is smooth) for DDH applications, we usually set p = 2g+1 where group operations all (e.g., 16384-bit modulus for 256 bits g is also a prime (p is a "safe prime") and work in the Scale linearly (or work) in of security)

subgroup of order g in \mathbb{Z}_{p}^{*} (\mathbb{Z}_{p}^{*} has order p-1=2g) bit length of the modulus

Elliptic	curve grou	ps: only require	256 bit modulus		security	
, Lə	Best attack	c is <u>genenic</u> at	tack and runs in	time 2 by P/2	[p-algorithm - can discuss at end of]
Ь	Much faster	than using \mathbb{Z}_1^*	: several standar	ds .	l semester	ן
		г Р256, Р384,			at end of semester	
	- Dan	Bernstein's curves	: Curve 25519) (or in a dream	ced crypto class)	
╘⋺	Widely used	for key-exchange	e + signatures or	n the web		

When describing apprographic constructions, we will work with an abstract group (easier to work with, less destuils to worry about)