de ~cyclic groups are commutative ~ fired to be the identity element gerator o such that I & is icif there exists ^a L ^I ⁹⁹, ⁹ , ..., I 161-1] Definition . = A . group (9, ^g, ...,gets to demote the set generated by ⁹ (which need not be the Example. Consider &* generatede Border=1 ⁼ ⁹¹ , Definition. For an element geD , we write (g) ⁼ entire set. The cardinality of (g) is the order of ^g (i .e., the size of the "subgroup" In this case , 5, 4, 2, 3, 63. . generator of My* 12) ⁼ 2 , 43 12 is not a) ord (2) ⁼ 3 91 , ⑰(Fermat's Theorem) : For all xeBp*, xY ⁼ 6, 4, ³³ (3 is ^a generator of MY) ord(3) : 6 13) ⁼ ⁹¹ , 3, ↳ For I , this means that ord(y)/p-l for all gtD 2, orange's Theorem . For ^a D, and ord (g) /1D) (the order of ^g is ^a divisor of 161). element gCD, group any 1 (modp) for integer I (2) ⁼ ., p-131 ⁼ Roof. 2, . . 191 , p-1 [↓] 1 = By Lagrange's Theorem ord(x)/p-l so we can write p-l= koord(X) and so x*= (yord(x)" ⁼ ⁼ (mod pl Suppose Xe , and we want to compute ^x * * ⁼ for some large integer ^yx4 Imation : Yp ↳ We can compute this as x ⁸ ⁼ xy(modp-1) (modp) Since xY= ¹ /modp(↳ Specifically , the exponents operate modulo the order of the group ↳ group (X+) where Enivalently : group (g) generated by ^g is morphic to the q(g= ord (g) g., e (g) ⁼ (g, +) gY x X times Y ^g Nation : denotes g . g g " - ^Y denotes (g) group element g g") Iinverse of gxdenotes g(X) where ^x computed mod ord(y) need to make sure this inverse exists! In cryptography , the groups we typically work with will be large (e. elements : 225" or 2024(Computing on group element (# bits) : Size of ~log 16) bits (236 bits/2048 bits) group Group operations in Ap*: logp bits element per group elements : addition of mod Ollog pl p values : multiplication of mod naively Ollog2p) p Karatsuba O(log""p) Schnhage-Strassen (CMP library) : O(log plogloyplogloglogp) best algorithm Ollogp loglogp) [2019] ↳ not yet practical (<2409 its to be faster...) using repeated squaring : ogPs , can implement using O(logp) exponentiation : ^g , g, g" , go , . . ., multiplications [O(logp) with naive multiplication] ↳> time/space trade-offs with more precomputed values division (inversion) : typically O(logp) using Euclidean algorithm (can be improved)

Composbational problems: in the following, let G be a finite cyclic group generated by g with order g.

\nThese the problem: sample
$$
x \stackrel{d}{=} z_6
$$

\nSince the graph of the following, $x = \frac{3}{4}$, $\frac{4}{3}$, $\frac{2}{3}$

\nTherefore, $x \stackrel{d}{=} z_6$

\nSince $x, y_1 \stackrel{d}{=} z_6$

\nSince $x, y_1 \stackrel{d}{=} z_6$

\nSince $x, y_1 \stackrel{d}{=} z_6$

\nasymyuk between (y, y^2, y^3, y^{33}) us. (y, y^2, y^3, y^5)

\nEach of these problems translates to a corresponding complement of the second point.

\nLet G = {y} be a finite cycle group of order g. (where g is a function of the second point).

\nLet G = {y} be a finite cycle group of order g. (where g is a function of the second point).

\nThe DDI1 assumption holds in G: f for all efficient advances, h:

\n $Re(x, y \stackrel{d}{=} z_6 : A(y, y^2, y^3, y^3) = 1] = Pr(x, y, e \stackrel{d}{=} z_6 : A(y, y^2, y^3, y^5) = 1] = neg(A)$

\nThe discrete log assumption holds in G: f for all efficient advances, h:

\n $Pr(x, y \stackrel{d}{=} z_6 : A(y, y^2, y^3) = y^{33}) = neg(A)$

\nThe discrete log assumption holds in G: f for all efficient addresses A:

\n $Pr(x \stackrel{d}{=} z_6 : A(y, y^2, y^3) = x] = rng(A)$

\nUsing eq. problem: the sum of the second point, the sum of the

there are groups where CDH Major open problem : does this hold? believed to be hard, but DDH is Can we find a group where discrete log is hard but CDH is easy ? easy

Diffie-Hellman key exchange

Let P be a group of prime order ^p (and generator g) - choice of group , generator, and order fixed by standard

bebreed to be hold, but 000
easy
every exchange
we a group of prime order
$$
p
$$
 (and gene
 $x \stackrel{a}{\leftarrow} \mathbb{Z}_p$
 \mathcal{S}^x
 \mathcal{S}^y
 \mathcal{S}^z

Compare
$$
g^{x}g = (g^{y})^{x}
$$
 complex $g^{x}g = (g^{x})^{g}$

$$
\begin{array}{c}\n \stackrel{0}{\longrightarrow} \\
 \stack
$$

But usually, we want a random <u>bit-string</u> as the key, <u>not random</u> group element

- ↳ Element gY has logp bits of entropy , so should be able to obtain ^a random bitstring with <logp bits \rightarrow Solution is to use a "randomness extractor"
	- ↳ Information-theoretic constructions based on universal hashing/pairwise-independent hashing
		- Closes some bits of entropy)

<u>Ins</u> Discrete log in Tp ete log in 2p when p is 2048-bits provides approximately 128-bits of security

-> Best attack is General Number Field Sieve (GNFS) - rans in time 2 dinst time Much better than brute force - 2 3 P α ¹ሜ የ | | | | | | | | | | | cube root in exponent not ideal ! Lis Need to choose p carefully in having s<u>mall</u> prime factors if we want to double security Jointiations: Discrete
13 Journalisms: Discrete
13 Jos a prime (p is if we want to double security, d to chasse p carefully having small prime factors
(e.g., avoid cases where p-1 is smooth) need to increase modulus by 8x ! for DDH applications, we usually set $p = 2g + 1$ where angle operations all enters if a
group operations all enters leg_{ter}
group operations all enters 16384- bit modulus for 236 bits g is also a prime (p is a "safe prime") and work in the scale linearly (or worse) in of security)

 s ubgroup of order q in \mathbb{Z}_p^* (\mathbb{Z}_p^* has order $p-1=3q$) bitleagth of the modulus

When describing copptographic constructions, we will work with an abstract group (easier to work with, less details to worry about)