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groups

: a candidate
group

where the best known discrete log algorithms are the generic ones

↳ Studied by mathematicians since antiquity ! See work of Diophantus , circa 200 AD]
↳

Proposed for use in cryptographic applications in the 1980s -

now is a leading choice for public-key cryptography on the

web [another example where abstract concepts in mathematics end
up having prising consequences]
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An elliptic curve is defined by an equation of the following form : ~ roots (and the group
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singfacts :

1
. Take any two rational points on the curve and consider the

Ea line that
passes through them. The line will intersect the curve

i at a new point ,
which will also have rational coefficients .

- ⑧

Th I 2. Take any rational point on the curve and consider the tangent
line through that point.

The line will intersect the curve at

a new point ,
which will do have rational coefficients

.

Thus
, given two rational points ,

there is a way to generate a third rational point.

↳ In fact
,

this operation essentially defines a group law (but with following modifications) :

1
.

We introduce a "point at infinity" (e.g.,
a horizontal line at

y
= c)

,
denote O (this is the identity element)

2 .
The group operation (called the "chord and targent" method) maps two curve points P = (x,,y) and Q = (x2

, Ye) to

a point R by first computing the third point that along the line connecting P
,
G and reflecting the point

about the X-axis .

[Observe that the reflection ensures that O is the identity)
↳ Remarkably,

this defines a group
law on the rational points on the elliptic curve

,
and we can write down algebraic relations

for
computing the group law (somewhat

messy
but there is a closed form expression)

In cryptography,
we work over finite domains

,
so we instead consider elliptic curves over <p (rather than TR or D)

.

Specifically ,
we write

E(2p) = 3x
, y = <g : y2

= xP + Ax +B30 903

No geometric interpretation of the
group law over Ig (instead,

define it using the algebraic definitions derived above)
↳ E(p) still forms a group under this group law

How big is the group E(p) ?

# m(Hasse)
.

Let E be an elliptic curve with coefficients in p Ther

11E(kp)1 - (p+1)/ -

>

265

Thus
,

number of points on EC1p) is roughly p=/
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keyencryption
: Encryption scheme where encryption is public (does not require secrets)

-

Setup -> (pK ,
sk) I generates a public/private key-pair

- also called ReyGen)
-

Encrypt(pK , m) + C I formally , this algorithm takes a security parameter x
S I-

Decrypt (sk, c) ->
m and the public/ecret kays are a function of x

Everyone can publish a public key (in a directory)
- Can encrypt to anyone without exchanging keys (recipient can be offine)

correctness : FmEM : Pr[CpK ,
sk) = Setup :

Decrypt (sk
, Encrypt (pK,

m)) = m) =

1

Security : Semantic security from secret key setting ,
but adversary also gets public key

be 30 ,13

adversary enger
↓

-

(p1 , sk) = Setup
<

miok, , me
↓
b'E90,13

SSAdvIA
, TKE]=/Pr[A outputs 1/ b = 07 - PrIA outputs 1/b = 1S)

In the secret-key setting ,
we distinguished between semantic security and CPA-security.

Here,
this is aessary since

semantic security
> CPA security [means that public-key encryption must be randomized! )

↳
Intuitively : adversary can encrypt messages on its own susing the public key)-

# from DDH (Examal) : Let D be a group
with generator g

and prime order
p

Recall Diffie-Hellman key exchange :

Alice X

x p p Idea
: Alice will publish h=g4 as her public key-

- Bob encrypts by choosing fresh share g8 and uses g** to

↓ ↓ encrypt the message

security parameter dictates what group is used (e.g,
4 p-sin)

g
+

y g-y

- Setup :

x &
p pk

: h M = 0

shared key :
g
** h =

g
Y sk : X C = 02

-h

Encrypt (pK , m) :

y
<

p

c
= (g2 ,

m -ht)

Decrypt (sKYc) : m = </

crectress :

= =

3** - is
**

= m


