Diffie-Hellman key-exchange is an anonymous key-exchange protocol: neither side knows who they are talking to L> vulnerable to a "man-in-the-middle" attack

Alice	Bab	Alice	Eve Bob	Observe Eve can
<u>9</u> ^	\rightarrow	~~~~>	<u>9</u> ^x <u>9</u> ^z ' >	now decrypt all of the messages
/ «97		4	g ² 2 $e^{g^{2}}$	between Allice and
axy	Jary	\checkmark	422 9yr,	Bob and Allice + Bub
J *		a ^{XZ} 2	9 ^{x2} 9 ^{y2}	have no solea!

What we require: <u>authenticated</u> key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority) Lo On the web, one of the parties will <u>authenticate</u> themself by presenting a <u>certificate</u>

To build authenticated key-exchange, we require more ingredients - namely, an integrity mechanism [e.g., a way to bind a build authenticated key-excrumy-, ______ message to a sender _ a "public-trey MAC" or <u>digital signature</u>] We will revisit when discussing the TLS protocol

Digital signature scheme: Consists of three algorithms:

- Setup -> (vk, sk): Outputs a verification key vk and a signing key sk

F Sign (sk, m) → o: Takes the signing key sk and a message m and outputs a signature or

-Verify $(vk,m,\sigma) \rightarrow 0/1$: Takes the verification key vk, a message m, and a signature σ , and outputs a bit 0/2Two requirements:

- Correctness: For all messages m ∈ M, (vk,sk) ← Setup, then

Pr [Verify(vk, m, Sign(sk,m)) = 1] = 1. [Honestly-generated signatures always verify]

- Unforgeability: Very similar to MAC security. For all efficient adversaries A, SigAdu [A] = Pr[w=]] = regl(2), where W is the output of the following experiment:

rdversary		challenger
	, vk	(vk,sk)← Setup
	men	
	$\underbrace{\sigma \leftarrow Sign(sk,m)}_{\leftarrow} (\mathcal{G})$	
\downarrow		
(m*, 0*)		

Let $m_1, ..., m_Q$ be the signing queries the adversary submits to the challenger Then, W = 1 if and only if: Verify $(uk, m^*, \sigma^*) = 1$ and $m^* \notin \{m_1, ..., m_0\}$

Adversary cannot produce a valid signature on a new message.

Exact analog of a MAC (slightly weaker untergrability: require adversary to not be able to forge signature on new message) HAC security required that no forgery is possible on any message [needed for authenticated encryption] digital signature elliptic-curve } standards (widely area & algorithm > DSA:) on the web - eg, TLS)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)

L> But construction not intuitive until we see zers knowledge proofs

Lo We will first construct from RSA (trapolator permutations)

We will now introduce some facts on composite-order groups:

Let
$$N = pq$$
 be a product of two primes p, q . Then, $\mathbb{Z}_{N} = \{0, 1, ..., N-1\}$ is the additive group of integers
modulo N. Let \mathbb{Z}_{N}^{*} be the set of integers that are invertible (under multiplication) modulo N.
 $\chi \in \mathbb{Z}_{N}^{*}$ if and only if $gcd(x, N) = 1$
Since $N = pq$ and p, q are prime, $gcd(x, N) = 1$ unless χ is a multiple of p or q :
 $\|\mathbb{Z}_{N}^{*}\| = N - p - q + 1 = pq - p - q + 1 = (p - 1)(q - 1) = \Phi(N)$
Faceall Lagrange's Theorem:
for all $\chi \in \mathbb{Z}_{N}^{*}$: $\chi^{\Phi(N)} = 1$ (mod N) [called Euler's theorem, but special case of Lagrange's theorem]
Hard problems in composite-order groups:

- Factoring: given N=pq where p and q are sampled from a suitable distribution over primes, output p, q
 <u>Computing cube roots</u>: Sample random X & ZN. Giren y=x³ (mod N), compute X (mod N).
 L> This problem is easy in ZP (when 3 t p-1). Namely, compute 3⁻¹ (mod p-1), say using Euclid's algorithm, and then compute y^{3⁻¹} (mod p) = (X³)^{3⁻¹} (mod p) = X (mod p).
 - L> Why does this procedure not work in \mathbb{Z}_{N}^{n} . Above procedure relies on computing $\mathbb{F}(\text{mod } |\mathbb{Z}_{N}^{n}|) = 3^{-1} \pmod{9(N)}$ But we do not know $\mathcal{P}(N)$ and computing $\mathcal{P}(N)$ is as hard as factoring N. In particular, if we know N and $\mathcal{P}(N)$, then we an write

and solve this system of equations over the integers (and recover p,g)

Hundress of computing cube roots is the basis of the <u>RSA</u> assumption: distribution over prime numbers (size determined by security parameter λ) <u>RSA</u> assumption: Take p, g < Primes, and set N= pg. Then, for all efficient adversaries A,

$$Pr[x \in \mathbb{Z}^{n}; y \leftarrow A(N, x) : y^{3} = x] = regl.$$

$$more generolly, can replace 3 with any e where god(e, 4(N)) = 1$$

Hardness of RSA relies on 9(N) being hard to compute, and thus, on hardness of factoring common choices: (Rurence direction factoring $\stackrel{?}{\Longrightarrow}$ RSA is <u>not</u> known) e = 3

Hardwess of factoring / RSA assumption:
 Best attack based on general number field sieve (GNFS) — runs in time ~ 2
 (same algorithm used to break discrete log over Zp^{*})
 For 112-bits of security, use RSA-2048 (N is product of two 1024-bit primes)
 (cost => ECC governly preferred over RSA
 128-bits of security, use RSA-3072
 Both prime factors should have <u>similar</u> bit-length (ECM algorithm factors in time that scales with <u>smaller</u> factor)

RSA problem gives an instruction of none genual ration called a trapher percentable:
From
$$2L_{n}^{n} = Z_{n}^{n}$$

Then $(T) := \chi^{2}$ (and N) situe $gd(N_{n}, e) = 1$
Given $(P(N), we can compute $dt = t^{n}$ (and P(N)). Observe that given d_{n} we can insert Foot:
From (T) is χ^{2} (and N).
Thus, for all $\chi \in \mathbb{Z}_{n}^{n}$:
From $(Fon(\chi)) = (\chi^{n})^{n} = \chi^{n} d (and P(N)) = \chi^{2} = \chi$ (and N).
The set $\chi \in \mathbb{Z}_{n}^{n}$:
 $Grave (P(N), we can compute $(T, e)^{n} = \chi^{n} d (and P(N)) = \chi^{2} = \chi$ (and N).
Thus, for all $\chi \in \mathbb{Z}_{n}^{n}$:
 $Grave (Fon(\chi)) = (\chi^{n})^{n} = \chi^{n} d (and P(N)) = \chi^{2} = \chi$ (and N).
The set $\chi \in \mathbb{Z}_{n}^{n}$:
 $Grave (Fon(\chi)) = (\chi^{n})^{n} = \chi^{n} (and P(N)) = \chi^{2} = \chi$ (and N).
The set $\chi \in \mathbb{Z}_{n}^{n}$:
 $Grave (Fon(\chi)) = (\chi^{n})^{n} = \chi^{n} (and P(N)) = \chi^{n}$ (and N).
The set $\chi \in \mathbb{Z}_{n}^{n}$:
 $Grave (Fon(\chi)) = (\chi^{n})^{n} = \chi^{n} (and P(N)) = \chi^{n}$ (and N).
The set $\chi \in \mathbb{Z}_{n}^{n}$:
 $Grave (Fon(\chi)) = \chi^{n} (and P(N)) = \chi^{n}$ (and $\chi \in \chi)$.
 $F(P(\chi), T) = \chi^{n}$ (b) and $\chi \in \chi$.
 $F(P(\chi), T) = \chi^{n}$ for all $\chi \in \chi$.
 $Grave (Grave (Grave)) = F(P(\chi), T)$ is a concerner for the trapher).
Note approach (comm "tothers" approach) to built signatures:
Let (F_{1}^{n+1}) be a trapher permutation
 T (without $\chi \in P(\chi)$) T is a concerner (Grave $\chi = F^{-1}(M, n))$
 T Signare hay will be $P(\chi)$ is the set χ a signature, cack $m = F(P(\chi), G)$
(concet because: F^{-1} is load to compute with trapher (Graves $\chi)$. Decrements is back
there on a condent input. The is the the trapher (Graves $\chi)$. Decrements is back
there on a condent input. The is the the trapher $F(P(\chi), G)$ for any $G \in X$.
 $Output m = F(P(\chi), G)$ is the the the trapher $F(P(\chi), G)$ for any $G \in X$.
 $Output m = F(P(\chi), G)$ and χ^{n} $Grave χ^{n} $Grave χ^{n} and χ^{n} $Grave $$$$$$$$$$$$$$$$$$$$