Diffie-Hellman key-exchange is an anonymous key-exchange protocol : anonymous hey-exchange protocol: neither side knows who they are talking
aiddle" attack to

What we require: <u>authorticated</u> key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority) gry
3 gray of the steel of the parties will attentions and reles on a root of
4 On the web, one of the parties will <u>authenticate</u> themself by presenting a certificate certificate gaz de die mondern de trust leg, a continuate authorize (not anonymous) and reles on a root of trust leg, a continuate authorizate authorizate themself by presenting a certificate of trust leg, a continuate authorizate aut

To build authenticated key-exchange, we require more ingredients - namely, an i<u>ntegrity</u> nechanism [e.g., a way to bind a amid authoriticated key-exch
message to a sender -

Digital signature scheme : Consists of three algorithms :

- Setup -> (rk, sk): Outputs a verification key vk and a signing bey sk

- Sign (sk, m) => σ : Takes the signing key sk and a message m and outputs a signature σ

- Verify (vk, m, σ) -> 0/1: Takes the verification key vk, a message m, and a signature σ , and outputs a bit 0/1 Two requirements:

 $-$ Correctness: For all messages $m \in \mathsf{M}$, $(\forall k, sk) \leftarrow$ Setup, then

 $Pr[\text{Verify}(rk, m, \text{Sign}(sk,m)) = 1] = 1.$ [Honestly generated signatures always verify] $\frac{1}{2}$ $\frac{1}{2}$

nforgeability: Very similar to MAC security. For all efficient adversaries A, SigAdvIQ] = Pr[W=1] = negl(a), where ^W is the output of the following experiment :

Let $m_1,...,m_{\mathcal{Q}}$ be the signing queries the adversary submits to the challenger Then, ω = 1 if and only if : Verify (uk, m^*, σ^*) = 1 and $\left[m^* \not\in \{m_0,...,m_2\} \right]$

Adversary cannot produce ^a valid signature on a New message .

Exact analog of a MAC (slightly weaker unforgeability: require adversary to not be able to forge signature on <u>new</u> message) when the security required that no forgery is possible on any message [needed for authenticated encryption] digital signature elliptic-curre of standards (widely and
5 algorithm 2 DSA J on the web - eg. 745)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)

↳ But construction not intuitive until we see zero knowledge proofs

↳ We will first construct from RSA (trapdoor permutations)

We will now introduce some facts on composite-order groups :

Let
$$
N = pq
$$
 be a product of two primes p, q . Then, $Z_N = \{0, 1, ..., N-1\}$ is the additive group of integers
modulo N. Let Z_N^* be the set of integers that are invertible (under multiplication) modulo N.
 $X \in Z_N^*$ if and only if gcd $(\pi, N) = 1$
Since $N = pq$ and p, q are prime, gcd $(X, N) = 1$ unless X is a multiple of p or q :
 $|Z_N^*| = N - p - q + 1 = pq - p - q + 1 = (p-1)(q-1) = P(N)$
Recall Lagrange's Theorem:
for all $X \in Z_N^*$: $X^{P(N)} = 1$ (mod N)
the important: "ring of exponents" operate module $P(N) = (p-1)(q-1)$
Let Y is a multiple of p or q :
Let's obtain function
for all $X \in Z_N^*$: $X^{P(N)} = 1$ (mod N)
to implement: "ring of exponents" operate module $P(N) = (p-1)(q-1)$

Hard problems in composite-order groups :

- Factoring: given N=pg where p and problems in composite-order groups:
- Factoriney: given N=pg where pand g are sampled from a suitable distribution over primes, output p, q
- Computer six anti-samp sade x et Z* (is - 2²³(m))) s a to x (,))) <u>Factoring</u>: given N
Computing cube roots: Sample random $\chi \triangleq \mathbb{Z}_N^*$. Given $y = x^3$ (mod N), compute χ (nod N). able distribution over primes, output p,q
pute X (mod N).
3⁻¹ (mod p-1), soy using Euclid's algorithm,and
	- ل <u>xting cube roots: Sample random</u> $\chi = \mathbb{Z}_n^{\kappa}$. Given $y = \chi'$ (mod N),
This problem is easy in \mathbb{Z}_p^{κ} (when $3 + p-1$). Namely, compute
then compute y^3 (mod p) = $(\chi^3)^3$ (mod p) = χ (mod p).
		- \mapsto Why does this procedure not work in \mathbb{Z}_n^* . Above procedure rebes on computing $3'$ (mod $|\mathbb{Z}_n^*|$) = $3'$ (mod $\varphi(n)$) But we do not know $\varphi(n)$ and computing $\varphi(n)$ is as hard as factoring N . In particular, if we know N and $P(N)$, then we am write

$$
\left\{\begin{array}{ccc} N \supset P \wr & \text{both relations hold over the integers} \\ \varphi(N) = (p-1) (q_0-1) \end{array}\right\}
$$

and solve this system of equations over the integers (and recover p, g)

Hurdness of computing cube roots is the basis of the Assumption: distribution over prime numbers (size determined by security parameter) and solve this system
Hundress of computing cube roots is
RSA assumption: Take $p, q \leftarrow Pr_{\text{min}}^{i}$
 $Pr(x \leftarrow$ RSA assumption: Take $p, q \leftarrow$ Primes, and set $N = pq$. Then, for all efficient adversaries A,

Then theorem has P1B (x
$$
\notin \mathbb{Z}_n^*
$$
 ; $y \leftarrow A(N, x) : y^3 = x^3 = \text{negl}$.
\n $Pr[x \stackrel{\text{def}}{=} \mathbb{Z}_n^*$; $y \leftarrow A(N, x) : y^3 = x^3 = \text{negl}$.
\n \Rightarrow Hedges of RSA other as (9(a)) being that the transfer of the image of the free

Hardness of RSA relies on 4(N) being hand to compute , and thus, on hardness of factoring common choices : Ruerse direction factoring \Rightarrow RSA is <u>not</u> known) e = $e = 3$

↑

e ⁼ 65537 Hardness of factoring/RSA assumption : souress of tationing / Non assumption:
- Best attack based on general number field siere (GNFS) - runs in fime ~ 2 (same algorithm used to break discrete log over Zp * $\frac{1}{2}$ (same algorithm veed to break discrete log over \mathbb{Z}_p^{π}) large key-sizes and computational $\frac{1}{2}$ For 112-bits of security, use RSA-2048 (N is product of two $1024-64$ primes) \sim cost \Rightarrow ECC generally 128-bits of security, are RSA-3072 - Both prime factors should have <u>similar</u> bit-length (ECM algorithm factors in time that scales with <u>smaller</u> factor)

\n- \n 1851 Problem 3) and a combination of more general notion called a **trapec-** operations?
\n- \n 1861 Find:
$$
12\frac{1}{n} \rightarrow 2\frac{1}{n}
$$
.
\n 1861 Find: $12\frac{1}{n} \rightarrow 2\frac{1}{n}$.
\n 1862 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1875 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1886 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1887 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1888 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1889 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1889 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n 1899 Find: $12\frac{1}{n} \times 6\frac{1}{n}$.
\n

 $\hspace{0.1mm} +$

 $\overline{}$ $\overline{}$

 $\overline{}$

 \rightarrow $\overline{}$