
Diffie-Hellman key-exchange is an anonymous key-exchange protocol
: neither side knows who they are talking to

-

↳ vulnerable to a "man-in-the-middle" attack

Alice Bob Alice Eve Bob Observe Eve can

- x -

I me G
X gEi now decrypt all

--
- ->

- giz ↳ ofthe message
e

-↓ ↓ ↓X Bob and Alice +Bob

gxy Yxy
xZz gYEz gYE , 7,32 ,

I
have wo iden !

I

What we require : Anticated key-exchange (not anonymous) and relies on a roof of trust leg , a certificate authority)
↳ On the web

,
one of the parties

will attenticate themself by presenting a certificate
-

To build authenticated key-exchange, we require more ingredients
- namely , an integrity mechanism [e.g., a way to bind a

message to a sender - a "public-key MAC" or digital signature]~-

We will revisit when discussing the TLS protocol
Digital signature scheme : Consists of three algorithms :

-

Setup + (rk
,

sk) : Outputs a verification key rk and a signing key sk

-

Sign (sk
, m) + 0 : Takes the signing key sk and a message m and outputs a signature o

-

Verify (rk
, m ,
of -> 011 : Takes the verification key ok

,
a message m

,
and a signature o

,
and outputs a bit of1

Two

requiremenis : For all messages me M
,

Luk
,
sk) - Setup,

thee

Pr[Verify(rk,
m

, Sign (sk,n)) = 1] = 1
. THonestly -generated signatures aways verity)

-

trgeability : Very similar to MAC security .
For all efficient adversaries A

, SigAdr[A] = PrTW=1] = reglia),
where

W is the output of the following experiment :

adversary challenger

T
- Setup

-

ilskin,)
se

↓
(m+, o

*)

Let m
,, MQ be the signing queries the adversary submits to the challenger Then

,
W= 1 if and only if :

Verify (rk ,
m+, 0x) = 1 and m

* 4 Em , , . .

.,
ma

Adversary cannot produce a valid signature on a New message .

Exact analog of a MAC (slightly weaker unforgeability
:

require adversary to not be able to farge signature on new message)
↳ MAC security required that no forgery is possible on any message Ineeded for authenticated

encryption] digital signature elliptic-curre Standards (wide she
galgorithm DSA

I

It is possible to build digital signatures from discrete log based assumptions (DSA , ECDSA)
↳ But construction not intuitive until we see zero knowledge proofs
↳ We will first construct from RSA (trapdoor permutations)

We will now introduce some facts on composite-order groups :

Let N =

pg be a product of two primes p.g.

Then
, XN

= 90
,

1
, ..., N-13 is the Additive group of integers

modulo N
.

Let F* be the set of integers that are invertible (under mication) modulo N
.

x = Yo
*

if and only if gad (x ,N)
= 1

Since N=pg and
p, g are prime, gcd(X,

N)= 1 unless x is a multiple of p or 9:

12 = N
-p

-

g
+ 1 =

pq
-

p
-

g
+ 1 = (p- 1)(g- 1) = 4(r)

&
Euler's phi function

Recall Lagrange's Theorem : (Euler's totient function)
for all x=X: x YN) =

1 (modN) <called Euler's theorem
,

but special case of Lagrange's theorem)
A-

important : "ring of exponents" operate modulo Y(N) = (p-2)(g- z)

Hard problems in composite-order groups
:

-

Factoring :
given N=pg where

p
and g are sampled from a suitable distribution over primes, output p, 9en

-

mingcube roots : Sample random x &
.

Given
y

= x"(modN)
, compute x(modN)

.

↳

This problem is easynotWhen 31P-D. Namely, Compute
3" (modp-1) , say using

Endid's algorithma

↳
Why does this procedure not work in 2

.

Above procedure relies on computing 3" (mod /Tr1) = 3 " (mod Y(N1)

But we do not know Y(N) and
computing 4(N) iswrdas factoring N

. In particular, if we

know N and YIN)
,

then we can write

-E N =

1 [both relations hold over the integers]
-(N) = (p- 1) (g- 1)

and solve this system of equations over the integers (and recover p, g)

Hurdness of computing cube roots is the basis of the Assumption :

distribution over prime numbers (size determined by security parameter i)
~V

#assumption : Take pig
- Primes

,
and Set N= pg .

Then
,

for all efficient adversaries A
,

PrIxc=; y
= A (N

,
x) : y = x) =

regl .

more generally,
can replace 3 with any e where gadle, YIN1)=1I ↳

↑
Hardness of RSA relies on 4(N) being hand to compute ,

and thus
,

on hardness of factoring common choices :

Reverse direction factoring L RSA is not known) e
= 3

e = 65537

Hardness of factoring/RSA assumption :

- Best attack based on general number field siere CONFS) -

runs in time -20(rigi)
same algorithm used to break discrete log over

p
*) large key-sizes and computational

-

For 112-bits of security ,
Use RSA-2048 (N is product of two 1024-bit primes) -cost = ECC generally

preferred over RSA
128-bits of security,

use RSA-3072

-

Both prime factors should have snar bit-length (ECM algorithm factors in time that scales with smaller factor)

RSA problem gives an instantiation of more general notion called a rapdoopermutation :

*

FRSA : IN + I
*

XFRSA(X) = = (mod N) where gad(N , e) = 1

Given YIN)
, we can compute

d = e"(mod YIN))
.

Observe that given d
,

we can invert FRSA :

FRA(X) = = x& (modN)
.

Them
,

for all x=I :

FRA (FrsA(x)) = (ye)d = yed(md4(N1) =

x
=

= x (mod N)
.

-rpermutations A trapdoor permutation (TDP) on a domain & consists of three algorithms :

-Setup -> (pp,
+d) : Outputs public parameters pp

and a trapdoor +a

-

FIpp , x) ->

y : On input the public parameters pp and input X
, outputs y =X

-F (td
, y) - x : On input the trapdoor +d and input y , output x=X

Requirements :

- Correctness : for all
pp output by Setup :

--

=> F(pp,) implements a permutation on X
.

-

F
" (+d

, F(pp, x)) =

X for all x = X
.

-

Security : Flpp,
a) is a

one-way
function (to an adversary who does not see the trapdo)

Naive approach (common "textbook" approach) to build signatures :

Let (F, F-) be a trapdoor permutation
- Verification key will be pp to sign a message m

, compute o < F
- (+d

, m)

-signing key will be +d 3 to verify a signature ,
check m

= F(pp,
of

Correct because :

F(pp ,
o) = F(pp,

F-(+d
, m)) =

m

Secure because F is hard to compute without trapdoor (signing key) #E!

↳ This is not true ! Security of TDP just says
that F

is
one-way . One-wayness just says function is hard

to invert on a wdom input . But in the case of signatures ,
the mage is the input.

This is not only
not random

,
but in fact

, adversarially chosen !

↳ Very easy to attack
.

Consider the O-query adversary :

Given verification key vk =

pp, compute F(pp , of for
any

o X

Output M
= F (pp,

o) and O

↳ By construction ,
o is a valid signature on the message m

,
and the adversary succeeds

with advantage 1
.

Textbook RSA signatures : [NEVER USE THIS !]

Setup
:

Sample (N
, e

,
d) where N=pg and ed = 1 (mod YIN1)

-d Output UK = (N
, e) and sk = d

Sign (sk
, m) :

Output O < and (mod N) 3 Lookstemptlandsimple. .
-2

Verify (rk , m
,
o) :

Output 1 if
=

m /mod N)

