
-TLS supports session setup using a pre-shared key" (so full handshake not needed) :

lient clientC Server Server
- -

-

#fullhandshake
>

first message
ClientHello + PreSharedKy(id)
-

-NewSessionTicket (nonce
,
id)

=> vulnerable to E EnCAE(k ,
data) = "O-RTTdata"

↓ replay attack & derived from preshaved key
-errerresponse

preshared key
derived from session secrets

,
nonce,

and id
fresh key KAtB , KBEA derived for

rest of session (based on initial messages)

negotiated - identity of peer

&+put of AKE protocol : (key ,
in)

#thenticity : Only party that knows key is id (i
.
e

.,
the party identified by id)

:Allpartiesotherthanclientandidcannotdistinguishkeyfrom
random Lie

, key ishda

&
if we do not have client authentication

, then

idclient is empty

Often also requireForwardsecrecy
:

compromise of server in the future anot affect secrecy of sessions in the past
-

In TLS
,

server secret is a signing key-fresh Diffie-Hellman secret used for each session is fresh ("ephemeral")
Compromising signing key allows impersonation of server

,
but does not break secrecy of past sessions

-
As we will see

,
not all AKE protocols provide forward secrecy

Very tricky to get right as we will see... Just use I!

#from PKE : suppose server has certificate authenticating a public key for a PKE scheme (CCA-secure) :

~nonceL

kE/Irk)Tak/skank &
Yields statically-secure ARE

-> (no forward secrecy)
↓ ↓ (rk) =Decrypt (skBank

,
c) Compromise of skBank compromises past

k
,

Bank k, check that r =r

Sessions
ML

no client authentication

If we do not encrypt the nonce r : replay attack possible (adversary replays messages from past session -
e .g.

"send Eve $10")
&L

nonce ensures-freshness

-Mutualauthentication : Bank has certificate identifying public key for PKE scheme

Alice has certificate identifying public key for signature scheme

#CertBak
,

"Alice') BankkER/n -> El
&- Sign (skAlice

,

Cr, C
,

"Bank")/
↓ certAlice ↓ (k, Alice) = Dec (skBank

,

c)

check Alice matches id in certificate
k

,
Bank k

,
Alice Check Alice's signature on Cr

,
C

,
"Bank") under plaice in certalise

Above protocol provides static (no forward secrecy) mutual authentication

Most variants to this protocol are broken! AKE very delicate:

-

Example: Suppose Alice encrypts (K
,
r) instead of (k

, "Alice") like in the server-auth protocol above

- Vulnerable to "identity misbinding" attack where Alice thinks she's talking to Bank but Bank thinks it's talking to Eve :

certaina 2)->ERKSign (skyline
,

Cr, C
, "Bankst↓ certAlice

k
,

Bank
H k

,
Alice

o Sign(skere ,
Cr

,
c

,
"Bank"))

=> Bank thinks it's talking to Eve

certEre

if Alice now sends "deposit this check into my account" to Bank,

Bank deposits it into Eve's account !

& observe that Eve did not break
secrecy

(she does not know k)
,

but nevertheless
,

broke

consistency

Above protocols supported by TLS 1. 2 ,
but deprecated in TLS 1.3 due to lack of forward secrecy

totally broken without signature,

To get forward secrecy , useeThemeral keys : adversary can replace
~fresh public key

with
,

oh

~

- for signature scheme learn Alice's
L Provides one-sided authentication chosen key

" ertSig i &
↳ok and

RI (signature binds yk to Bank)

Forward secure since each pl used only once

↓ ↓ k
+Des,a and long-term secret iseigning key

k
,
Bank k

,
I

↓
hardware security module (used to protect cryptographic secrets)

Problem : Does not provide "HSM security"
-> Suppose adversary breaks into the bank and learns a single (pk', sk'l pair with o Sign /Skank

, pk)
↳

Adversary can now impersonate the bank to
any

client :

adversary always use the message certao & defending against this requires ess from cei

