
TLS 1 .3 and authenticated key-exchange protocols on the Internet typically provide osided authentication (i.e
.,
client learns id of

the server, but not vice versal

Question : how does the client authenticate to the server (without providing a certificate)
->

e.g., how does client login to a web service?

client and server assumed to have e.g, client
has a password and serveI I#pical setting : some shared state has an HMAC of the password

(sk) (uk)
client Server

Eprotocol & not replace this with anonymous key exchange
client learn.......................................

- becomes vulnerable to a man-in-the-middle attack
-server's identity identification protocol
-

Threatmodels : Adversary's goal is to authenticate to server

#Directattack : adversary only sees vk and needs to authenticate

Le.g., physical analogy : door lock
-

adversary can observe the lock
,
does not see the key sk)

Eavesdroppingattack : adversary gets to observe multiple interactions between honest client and the server

Le.g., physical analogy : wireless car key
- adversary observes communication between car key and car)

#tireattack : adversary can impersonate the server and interact with the honest client

le.g ., physical analogy :fake ATM in the mall - honest clients interact directly with the adversary

Simple (insecure) password-based protocol :

Alient 1Sk : pwd] Server [vk : pwd]-

prod
->

↓

accept if vk= pod

Not secure even against direct attacks ! Adversary who learns vk can authenticate as the client adversary who breaks into server[
learns user's password !

&
NEVER STORE PASSWORDS IN THE CLEAR !

Eightlybetter solution : hash the passwords before storing server maintains mappings
Alice > H(prdutice)
BobH H(prdpob)

whereH is a collision-resistant hash function

Client [sk: pwd] server [vk : H(pwdl]
pud
-

↓
accept if

vk = H(pwa)






