3-message protocols that satisfy completeness , special soundness , and HVIK are called &-protocols -) G-protocols are useful for building signatures and identification protocols

How can a prover both prove knowledge and yet be zero-knowledge at the same fime?

Lis Extractor operates by "rewinding" the prover (if the prover has good success probability, it can answer most challenges correctly. \mapsto But in the real (actual) protocol, verifier cannot rewind (i.e., verifier only sees prover on fresh protocol executions), which can provide zero-knowledge.

Many extensions of Schnorr's protocol to prove relations in the exponent.

(NI2K) Non-interactive zero-knowledge: Can we construct a zero-knowledge proof system where the proof is a single ressage from the prover to the verifier?

 $NIZKs$ for NP unlikely to exist for NP (unless $NP \subseteq BPP$), but possible in the random oracle model (as well as in the common reference string model) Provide 2
Many extensions of
Non-interactive 2000-k
Non-interactive 2000-k
MIZKs for N
Model (as well
Fiat-Shamir heuristic:
Pecall Schnore's protor
prove (g, h=3,
r e Zp

First-Shamir heuristic: NIZKs in random oracle model

Recall Schnoor's protocol for proving knowledge of discrete log: prover (g, h= mir <u>beuristic</u>
Schnorr's pro
gnorr (g, h= g" , x) Verifier (g.gt) - --

 $u \leftarrow g^r$ u Schnore's protocol for proving knowledge of d

prover $(g,h=\frac{x}{3},x)$

r $\frac{a}{x}$ $\frac{z}{x}$
 $u \leftarrow g$
 $z \leftarrow r + cx$
 $\frac{z}{x}$ $\frac{c}{x}$
 $\frac{z}{x}$ $\frac{c}{x}$ prover to the verifier?

Prover (x, x)

The line of the common reference

Il as in the common reference

I IVIZKs in romdom orade model

I IVIZKs in romdom orade model

I verify that

C \angle

Z

Verify that In this protocol, verifier's nessage is uniformly random l and in fact, is "public coin" $-$ the verifier has no unlikely to exist
as in the commo
NIZI(s in romdom or
a)
a for proving knowledge
(
E
E
E
E ρ secrets) \vec{z} quer (g, h^2)

r $\stackrel{R}{\leftarrow}$ Zp
 $h \leftarrow g^2$

z \leftarrow r + cz verify that g^2 = $u \cdot h$ <

Key idea : Replace the verifier's challenge with a hash function $H: \{0,1\}^n \rightarrow \mathbb{Z}_p$ Kephce the verifier's challenge with a hash tunction H: 10,15 - 2p
Namely, instead of sampling (EZp, we sample C H(g,h,u). < prover can now compute this quantity on its own!

Completess, zero-knowledge, proof of knowledge follow by a similar analysis as Schnorr [will rely on random orack] Signatures from discrete log in RO model (Schnorr) :

Sublattice from discrete log of R to model (Schner):

\n
$$
-Setup: \times \stackrel{\circ}{\sim} \mathbb{Z}_{p}
$$
\n
$$
-Sign (sk, m): \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \mathbb{Z}_{p}
$$
\n
$$
-Sign (sk, m): \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \mathbb{Z}_{p}
$$
\n
$$
u \leftarrow g^{T} \quad c \leftarrow H(g, h, u, m) \quad z \leftarrow r \cdot c \times
$$
\n
$$
\sigma = (u, z)
$$
\n
$$
-Verify (yk, m, \sigma): \text{write } \sigma = (u, z), \text{ compute } c \leftarrow H(g, h, u, m) \quad \text{and } \text{accept if } g^{Z} = u \cdot h
$$
\nLet h is the number of possible elements.

Security essentially follows from security of Schnore's identification protocol (together with Fiat-Shewin)

by forged signature on a new message n is a proof of knowledge of the discrete log (can be extracted from adversary)

Length of Shnor's signature:
$$
\forall k: (g, h=g^{x})
$$
 $\sigma: (g^{r}, C = H(g, h, g^{r}, m), Z = r + cx)$ Verify a vertex check that $g^{z} = g^{r}h^{r}$
\nsk: x\nconve computed given
\ndo not need to include

But, can do better... observe that challenge c only needs to be 128-bits (the knowledge error of schnorr is /1c1 where C is the set of possible challenges), so we can somple a 128 -bit challenge rother than 256-bit challenge. Thus, instead of sending (g^r, z) instead send (c, z) and compute $g^r = 3^2/k$ and that $c = H(g,h,g^r,m)$. Then resulting signatures are 384 bits 128 bit challenge ℓ

256 bit group element

Important note: Schnorr signatures are <u>randomized,</u> and security relies on having good randomness

4 What happens if randomness is rewed for two different signatures?

$$
\sigma_{1} = (g^{r}, c_{i}^{2} H(g_{i}h_{1}g^{r}, m_{i}), a_{i}^{2-r+c_{i}k}) \} \frac{1}{2} \frac{
$$

This is precisely the set of relations the knowledge extractor uses to recover the discrete log X (i.e., the signing key)!

Deterministic Schnore: We want to replace the random value r & Zp cathore that is deterministic, but which does not compromise security Derive randomness from message using a PRF. In particular, signing by includes a secret PRF bey h, and Signing algorithm computes $r \leftarrow F(k,m)$ and $\sigma \leftarrow \text{Sign}(skm, j, r)$. La Avoids randomness reuse/misure valmentalities.

digital signature algorithm / elliptic-curve DSA In practice, we use a variant of Schnoor's signature scheme called DSA/ECDSA practice, we use a variant of Schnar's signature scheme called USH / ECDH [but we use it became Schnare]
-> larger signatures (2 group elements - 512 bits) and proof only in "generic group" model [was patented ... world

ECDSA signatures (over a group & of prime order p):

Step 1:
$$
x \stackrel{\text{def}}{\leftarrow} Z_p
$$

\nwhere $x \stackrel{\text{def}}{\leftarrow} Z_p$ is a specific value of x and x is a positive value of x .

\nUsing $(sk, m): \alpha \stackrel{\text{def}}{\leftarrow} Z_p$ is a positive value of x .

\nUsing $(sk, m): \alpha \stackrel{\text{def}}{\leftarrow} Z_p$ is a positive value of x .

\nUsing $(sk, m): \alpha \stackrel{\text{def}}{\leftarrow} Z_p$ is a positive value of x .

\nUsing $(sk, m): \alpha \stackrel{\text{def}}{\leftarrow} Z_p$ is a positive value of x .

\nSubstituting $(k, m): \alpha \stackrel{\text{def}}{\leftarrow} Z_p$ is a positive value of x .

\nSubstituting $(0, 0)$ and $(0, 0)$, where x is viewed as a positive value of x .

\nSubstituting $(0, 0)$ and $(0, 0)$, where x is viewed as a positive value of x .

\nSubstituting $(0, 0)$ and $(0, 0)$, where x is viewed as a positive value of x .

\nSubstituting $(0, 0)$ and $(0, 0)$, where x is viewed as a positive value of x .

$$
-\n\begin{array}{ccc}\n-\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\begin{
$$

\n**Conceptness:**\n
$$
u = \frac{H(m)/s}{n} \cdot \frac{r}{s} = \frac{H(m) + r \cdot 1}{s} = \frac{[H(m) + r \cdot 1/(H(m) + r \cdot 1)] \cdot \frac{1}{s}}{s} = \frac{1}{s} \cdot \frac{1}{s}
$$
\n

\n\n**Security analysis:**\n $non-trivial: requires either strong assumptions or modelling (5 as an "ideal group")\n$

\n\nSignature size:\n $\sigma = (r, s) \in \mathbb{Z}_p^2 - f_0 r$ \n $l28-bit Security, p \sim \frac{256}{s} \cdot s \cdot | \sigma| = 5l2 b \cdot 1$ \n

\n\n**1** $\sigma = (2s \cdot 1) \cdot 1$ \n